Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 831
Filter
1.
Cell Host Microbe ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38959900

ABSTRACT

The gut microbiota and diet-induced changes in microbiome composition have been linked to various liver diseases, although the specific microbes and mechanisms remain understudied. Alcohol-related liver disease (ALD) is one such disease with limited therapeutic options due to its complex pathogenesis. We demonstrate that a diet rich in soluble dietary fiber increases the abundance of Bacteroides acidifaciens (B. acidifaciens) and alleviates alcohol-induced liver injury in mice. B. acidifaciens treatment alone ameliorates liver injury through a bile salt hydrolase that generates unconjugated bile acids to activate intestinal farnesoid X receptor (FXR) and its downstream target, fibroblast growth factor-15 (FGF15). FGF15 promotes hepatocyte expression of ornithine aminotransferase (OAT), which facilitates the metabolism of accumulated ornithine in the liver into glutamate, thereby providing sufficient glutamate for ammonia detoxification via the glutamine synthesis pathway. Collectively, these findings uncover a potential therapeutic strategy for ALD involving dietary fiber supplementation and B. acidifaciens.

2.
Int J Biol Macromol ; 274(Pt 2): 133172, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880458

ABSTRACT

In the field of bone tissue repair, the treatment of bone defects has always posed a significant challenge. In recent years, the advancement of bone tissue engineering and regenerative medicine has sparked great interest in the development of innovative bone grafting materials. In this study, a novel hydroxyapatite (HA) material was successfully prepared and comprehensively characterized. Antimicrobial experiments and biological evaluations were conducted to determine its efficacy. Based on the aforementioned research findings, 3D printing technology was employed to fabricate HA/chitosan (CS)/ polycaprolactone (PCL) scaffolds. The composition of the scaffold materials was confirmed through X-ray diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) tests, while the influence of different HA ratios on the scaffold surface morphology was observed. Additionally, antimicrobial experiments demonstrated the favorable antimicrobial activity of the scaffolds containing 30%HA + 5%CS + PCL. Furthermore, the water contact angle measurements confirmed the superhydrophilicity of the scaffolds. Finally, the excellent bioactivity and ability to promote tissue regeneration of the scaffolds were further confirmed by in vitro and in vivo experiments. This study provides new options for future repair and regeneration of bone tissue and clinical applications.

4.
Med ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38870932

ABSTRACT

BACKGROUND: The interim analysis of the randomized phase 3 ESCORT-1st study demonstrated significantly longer overall survival (OS) and progression-free survival (PFS) for camrelizumab-chemotherapy than placebo-chemotherapy in untreated advanced/metastatic esophageal squamous cell carcinoma (ESCC). Here, we present the final analysis of this study and investigate potential indicators associated with OS. METHODS: Patients were randomized 1:1 to receive camrelizumab (200 mg) or placebo, both in combination with up to six cycles of paclitaxel (175 mg/m2) and cisplatin (75 mg/m2). All treatments were administered intravenously every 3 weeks. The co-primary endpoints were OS and PFS assessed by the independent review committee. FINDINGS: As of April 30, 2022, the median OS was significantly longer in the camrelizumab-chemotherapy group compared to the placebo-chemotherapy group (15.6 [95% confidence interval (CI): 14.0-18.4] vs. 12.6 months [95% CI 11.2-13.8]; hazard ratio [HR]: 0.70 [95% CI 0.58-0.84]; one-sided p < 0.0001), with 3-year OS rates of 25.6% and 12.8% in the two groups, respectively. The 2-year PFS rates were 20.4% in the camrelizumab-chemotherapy group and 3.4% in the placebo-chemotherapy group. Adverse events were consistent with those reported in the interim analysis. Higher PD-L1 expression correlated with extended OS, and multivariate analysis identified sex and prior history of radiotherapy as independent indicators of OS. CONCLUSIONS: The sustained and significant improvement in efficacy with camrelizumab-chemotherapy compared to placebo-chemotherapy, along with the absence of accumulating or delayed toxicities, supports the long-term use of camrelizumab-chemotherapy as a standard therapy in untreated advanced/metastatic ESCC. FUNDING: This study was funded by Jiangsu Hengrui Pharmaceuticals Co., Ltd.

5.
Mol Ther ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822526

ABSTRACT

Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.

6.
Cancer Lett ; 597: 217045, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871246

ABSTRACT

To maintain protein homeostasis, X-box binding protein 1 (XBP1) undergoes splicing following the activation of the unfolded protein response (UPR) in response to endoplasmic reticulum (ER) stress. Although targeting ER stress represents a promising therapeutic strategy, a comprehensive understanding of XBP1 at the cellular level and the link between XBP1 and the innate nervous system is lacking. Here, TCGA pancancer datasets from 33 cancer types, scRNA pancancer datasets from 454 patients and bulk RNA-seq datasets from 155 paired esophageal squamous cell carcinoma (ESCC) patients were analyzed. To cope with ER stress, plasma cells tend to activate XBP1 after undergoing bacterial infection and inflammatory signaling from the innate immune system. Patients with high XBP1 expression in their plasma cells have a higher tumor grade and worse survival. However, activation of the innate immune system with increased XBP1 expression in plasma cells correlates with an increased lymphocyte ratio, indicative of a more robust immune response. Moreover, XBP1 activation appears to initiate leukocyte migration at the transcriptional level. Our study revealed that the XBP1-induced UPR could mediate the crosstalk between optimal acquired humoral immune responses and innate immunity in ESCC.

7.
EBioMedicine ; 105: 105177, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924839

ABSTRACT

BACKGROUND: The 5-year survival rate of oesophageal squamous cell carcinoma (ESCC) is approximately 20%. The prognosis and drug response exhibit substantial heterogeneity in ESCC, impeding progress in survival outcomes. Our goal is to identify a signature for tumour subtype classification, enabling precise clinical treatments. METHODS: Utilising pre-treatment multi-omics data from an ESCC dataset (n = 310), an enhancer methylation-eRNA-target gene regulation network was constructed and validated by in vitro experiments. Four machine learning methods collectively identified core target genes, establishing an Enhancer Demethylation-Regulated Gene Score (EDRGS) model for classification. The molecular function of EDRGS subtyping was explored in scRNA-seq (n = 60) and bulk-seq (n = 310), and the EDRGS's potential to predict treatment response was assessed in datasets of various cancer types. FINDINGS: EDRGS stratified ESCCs into EDRGS-high/low subtypes, with EDRGS-high signifying a less favourable prognosis in ESCC and nine additional cancer types. EDRGS-high exhibited an immune-hot but immune-suppressive phenotype with elevated immune checkpoint expression, increased T cell infiltration, and IFNγ signalling in ESCC, suggesting a better response to immunotherapy. Notably, EDRGS outperformed PD-L1 in predicting anti-PD-1/L1 therapy effectiveness in ESCC (n = 42), kidney renal clear cell carcinoma (KIRC, n = 181), and bladder urothelial carcinoma (BLCA, n = 348) cohorts. EDRGS-low showed a cell cycle-activated phenotype with higher CDK4 and/or CDK6 expression, demonstrating a superior response to the CDK4/6 inhibitor palbociclib, validated in ESCC (n = 26), melanoma (n = 18), prostate cancer (n = 15) cells, and PDX models derived from patients with pancreatic cancer (n = 30). INTERPRETATION: Identification of EDRGS subtypes enlightens ESCC categorisation, offering clinical insights for patient management in immunotherapy (anti-PD-1/L1) and CDK4/6 inhibitor therapy across cancer types. FUNDING: This study was supported by funding from the National Key R&D Program of China (2021YFC2501000, 2020YFA0803300), the National Natural Science Foundation of China (82030089, 82188102), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-018, 2022-I2M-2-001, 2021-I2M-1-067), the Fundamental Research Funds for the Central Universities (3332021091).

8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 520-526, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38932538

ABSTRACT

The segmentation of dental models is a crucial step in computer-aided diagnosis and treatment systems for oral healthcare. To address the issues of poor universality and under-segmentation in tooth segmentation techniques, an intelligent tooth segmentation method combining multiple seed region growth and boundary extension is proposed. This method utilized the distribution characteristics of negative curvature meshes in teeth to obtain new seed points and effectively adapted to the structural differences between the top and sides of teeth through differential region growth. Additionally, the boundaries of the initial segmentation were extended based on geometric features, which was effectively compensated for under-segmentation issues in region growth. Ablation experiments and comparative experiments with current state-of-the-art algorithms demonstrated that the proposed method achieved better segmentation of crowded dental models and exhibited strong algorithm universality, thus possessing the capability to meet the practical segmentation needs in oral healthcare.


Subject(s)
Algorithms , Tooth , Humans , Tooth/diagnostic imaging , Models, Dental , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods
9.
PLoS One ; 19(6): e0304066, 2024.
Article in English | MEDLINE | ID: mdl-38935673

ABSTRACT

In recent years, with the development of the Internet, the attribution classification of APT malware remains an important issue in society. Existing methods have yet to consider the DLL link library and hidden file address during the execution process, and there are shortcomings in capturing the local and global correlation of event behaviors. Compared to the structural features of binary code, opcode features reflect the runtime instructions and do not consider the issue of multiple reuse of local operation behaviors within the same APT organization. Obfuscation techniques more easily influence attribution classification based on single features. To address the above issues, (1) an event behavior graph based on API instructions and related operations is constructed to capture the execution traces on the host using the GNNs model. (2) ImageCNTM captures the local spatial correlation and continuous long-term dependency of opcode images. (3) The word frequency and behavior features are concatenated and fused, proposing a multi-feature, multi-input deep learning model. We collected a publicly available dataset of APT malware to evaluate our method. The attribution classification results of the model based on a single feature reached 89.24% and 91.91%. Finally, compared to single-feature classifiers, the multi-feature fusion model achieves better classification performance.


Subject(s)
Software , Internet , Algorithms , Humans , Deep Learning
10.
iScience ; 27(5): 109795, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38741711

ABSTRACT

Despite the promising outcomes of immune checkpoint inhibitors (ICIs), resistance to ICI presents a new challenge. Therefore, selecting patients for specific ICI applications is crucial for maximizing therapeutic efficacy. Herein, we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network and transcriptional signatures of T cells and myeloid cells define distinct ESCC subtypes characterized by T cell exhaustion, and interleukin (IL) and interferon (IFN) signaling. Furthermore, this approach classifies ESCC patients into ICI responders and non-responders, as validated by whole tumor transcriptomes and liquid biopsy-based single-cell transcriptomes of anti-PD-1 ICI responders and non-responders. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and potentially predicting ICI responses in ESCC patients.

11.
Natl Sci Rev ; 11(5): nwae150, 2024 May.
Article in English | MEDLINE | ID: mdl-38803565

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% of ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the TME and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Among them, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.

12.
Angew Chem Int Ed Engl ; : e202402265, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760991

ABSTRACT

The single-unit monomer insertion (SUMI), derived from living/controlled polymerization, can be directly functionalized at the end or within the chain of polymers prepared by living/controlled polymerization, offering potential applications in the preparation of polymers with complex architectures. Many scenarios demand the simultaneous incorporation of monomers suitable for different polymerization methods into complex polymers. Therefore, it becomes imperative to utilize SUMI technologies with diverse mechanisms, especially those that are compatible with each other. Here, we reported the orthogonal SUMI technique, seamlessly combining radical and cationic SUMI approaches. Through the careful optimization of monomer and chain transfer agent pairs and adjustments to reaction conditions, we can efficiently execute both radical and cationic SUMI processes in one pot without mutual interference. The utilization of orthogonal SUMI pairs facilitates the integration of radical and cationic reversible addition-fragmentation chain transfer (RAFT) polymerization in various configurations. This flexibility enables the synthesis of diblock, triblock, and star polymers that incorporate both cationically and radically polymerizable monomers. Moreover, we have successfully implemented a mixing mechanism of free radicals and cations in RAFT step-growth polymerization, resulting in the creation of a side-chain sequence-controlled polymer brushes.

13.
Br J Cancer ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762674

ABSTRACT

BACKGROUND: Immune checkpoint blockade (ICB) therapy provides remarkable clinical benefits for multiple cancer types. However, the overall response rate to ICB therapy remains low in esophageal squamous cell carcinoma (ESCC). This study aimed to identify biomarkers of ICB therapy for ESCC and interrogate its potential clinical relevance. METHODS: We investigated gene expression in 42 treatment-naïve ESCC tumor tissues and identified differentially expressed genes, tumor-infiltrating lymphocytes and immune-related genes signatures associated with differential immunotherapy responses. We systematically assessed the tumor microenvironment using the NanoString GeoMx digital spatial profiler, single-cell RNA-seq and multiplex immunohistochemistry in ESCC. Finally, we evaluated the associations between HLA-A-positive tertiary lymphoid structures (TLSs) and patients' responses to ICB in 60 ESCC patients. RESULTS: Tumor infiltrating B lymphocytes and several immune-related gene signatures, such as the antigen presenting machinery (APM) signature, are significantly elevated in ICB treatment responders. Multiplex immunohistochemistry identified the presence of HLA-A+ TLSs and showed that TLS-resident cells increasingly express HLA-A as TLSs mature. Most TLS-resident HLA-A+ cells are tumor-infiltrating T (TIL-T) or tumor-infiltrating B (TIL-B) lymphocytes. Digital spatial profiling of spatially distinct TIL-T lymphocytes and single-cell RNA-seq data from 60 ESCC tumor tissues revealed that CXCL13-expressing exhausted TIL-Ts inside TLSs are reactivated with elevated expression of the APM signature as TLSs mature. Finally, we demonstrated that HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, are associated with a clinical benefit from ICB treatment for ESCC. CONCLUSIONS: HLA-A+ TLSs are present in ESCC tumor tissues. TLS-resident TIL-Ts with elevated expression of the APM signature may be reactivated. HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, may serve as biomarkers for ICB-treated ESCC patients.

14.
BMC Infect Dis ; 24(1): 493, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745170

ABSTRACT

BACKGROUND: Diet plays an important role in Helicobacter pylori (HP) infection, and our objective was to investigate potential connections between dietary patterns, specific food groups, and HP infection status in U.S. adults. METHODS: The data for this study was obtained from the NHANES (National Health and Nutrition Survey) database for the year 1999-2000. This cross-sectional study involved the selection of adults aged 20 years and older who had undergone dietary surveys and HP testing. Factor analysis was employed to identify dietary patterns, and logistic regression models were utilized to assess the association between these dietary patterns and specific food groups with HP infection status. RESULT: Based on the inclusion and exclusion criteria, our final analysis included 2,952 individuals. The median age of participants was 51.0 years, and 48.7% were male. In the study population, the overall prevalence of HP infection was 44.9%. Factor analysis revealed three distinct dietary patterns: High-fat and high-sugar pattern (including solid fats, refined grains, cheese, and added sugars); Vegetarian pattern (comprising fruits, juices, and whole grains); Healthy pattern (encompassing vegetables, nuts and seeds, and oils). Adjusted results showed that the high-fat and high-sugar pattern (OR = 0.689, 95% CI: 0.688-0.690), vegetarian pattern (OR = 0.802, 95% CI: 0.801-0.803), and healthy pattern (OR = 0.717, 95% CI: 0.716-0.718) were all linked to a lower likelihood of HP infection. Further analysis of the high-fat and high-sugar pattern revealed that solid fats (OR = 0.717, 95% CI: 0.716-0.718) and cheese (OR = 0.863, 95% CI: 0.862-0.864) were protective factors against HP infection, while refined grains (OR = 1.045, 95% CI: 1.044-1.046) and added sugars (OR = 1.014, 95% CI: 1.013-1.015) were identified as risk factors for HP infection. CONCLUSION: Both the Vegetarian pattern and the Healthy pattern are associated with a reduced risk of HP infection. Interestingly, the High-fat and High-sugar pattern, which is initially considered a risk factor for HP infection when the score is low, becomes a protective factor as the intake increases. Within this pattern, animal foods like solid fats and cheese play a protective role, while the consumption of refined grains and added sugars increases the likelihood of HP infection.


Subject(s)
Cheese , Helicobacter Infections , Helicobacter pylori , Nutrition Surveys , Humans , Male , Cross-Sectional Studies , Helicobacter Infections/epidemiology , Middle Aged , Female , Cheese/microbiology , Adult , Diet , Dietary Fats , Aged , Young Adult , Prevalence , Risk Factors , United States/epidemiology , Feeding Behavior
15.
ACS Omega ; 9(17): 19440-19450, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708237

ABSTRACT

Calcium silicate (CS), a new and important bioceramic bone graft material, is prepared by using eggshells, which have a porous structure and are rich in calcium ions. Furthermore, the preparation of new CS materials using eggshells and diatomaceous earth minimizes their negative impact on the environment. In this study, we prepared CS materials using a high-temperature calcination method. The composition of the material was demonstrated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. Scanning electron microscopy (SEM) analysis confirmed the porous structure of the CS material. We also introduced ZnO to prepare ZnO-CS with antibacterial properties and showed that ZnO-CS exhibits excellent antibacterial effects through in vitro antibacterial experiments. Subsequent in vitro mineralization experiments demonstrated that ZnO-CS promoted the formation of a hydroxyapatite layer. Furthermore, in vitro cytotoxicity experiments demonstrated that ZnO-CS had very good biosafety and promoted cell proliferation. These findings were confirmed through subsequent cell proliferation experiments. Our results indicate that the novel ZnO-CS is a promising candidate for bone tissue engineering.

16.
Front Plant Sci ; 15: 1413896, 2024.
Article in English | MEDLINE | ID: mdl-38812732

ABSTRACT

Woody plant encroachment (WPE), a widespread ecological phenomenon globally, has significant impacts on ecosystem structure and functions. However, little is known about how WPE affects phenology in wetland ecosystems of middle and high latitudes. Here, we investigated the regional-scale effects of WPE on the start (SOS), peak (POS), end (EOS), and length (GSL) of the growing season in boreal wetland ecosystems, and their underlying mechanisms, using remote sensing dataset during 2001-2016. Our results showed that WPE advanced the annual SOS and POS, while delaying EOS and extending GSL in boreal wetlands with these impacts increasing over time. When boreal wetland ecosystems were fully encroached by woody plants, the SOS and POS were advanced by 12.17 and 5.65 days, respectively, the EOS was postponed by 2.74 days, and the GSL was extended by 15.21 days. We also found that the impacts of WPE on wetland SOS were predominantly attributed to the increased degree of WPE (α), while climatic factors played a more significant role in controlling the POS and EOS responses to WPE. Climate change not only directly influenced phenological responses of wetlands to WPE but also exerted indirect effects by regulating soil moisture and α. Winter precipitation and spring temperature primarily determined the effects of WPE on SOS, while its impacts on POS were mainly controlled by winter precipitation, summer temperature, and precipitation, and the effects on EOS were mainly determined by winter precipitation, summer temperature, and autumn temperature. Our findings offer new insights into the understanding of the interaction between WPE and wetland ecosystems, emphasizing the significance of considering WPE effects to ensure accurate assessments of phenology changes.

17.
Proc Natl Acad Sci U S A ; 121(19): e2315348121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38701117

ABSTRACT

Ovarian cancer is an aggressive gynecological tumor characterized by a high relapse rate and chemoresistance. Ovarian cancer exhibits the cancer hallmark of elevated glycolysis, yet effective strategies targeting cancer cell metabolic reprogramming to overcome therapeutic resistance in ovarian cancer remain elusive. Here, we revealed that epigenetic silencing of Otubain 2 (OTUB2) is a driving force for mitochondrial metabolic reprogramming in ovarian cancer, which promotes tumorigenesis and chemoresistance. Mechanistically, OTUB2 silencing destabilizes sorting nexin 29 pseudogene 2 (SNX29P2), which subsequently prevents hypoxia-inducible factor-1 alpha (HIF-1α) from von Hippel-Lindau tumor suppressor-mediated degradation. Elevated HIF-1α activates the transcription of carbonic anhydrase 9 (CA9) and drives ovarian cancer progression and chemoresistance by promoting glycolysis. Importantly, pharmacological inhibition of CA9 substantially suppressed tumor growth and synergized with carboplatin in the treatment of OTUB2-silenced ovarian cancer. Thus, our study highlights the pivotal role of OTUB2/SNX29P2 in suppressing ovarian cancer development and proposes that targeting CA9-mediated glycolysis is an encouraging strategy for the treatment of ovarian cancer.


Subject(s)
Carbonic Anhydrase IX , Mitochondria , Ovarian Neoplasms , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/genetics , Cell Line, Tumor , Animals , Mice , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glycolysis/drug effects , Gene Silencing , Gene Expression Regulation, Neoplastic/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Metabolic Reprogramming
18.
Nat Commun ; 15(1): 3700, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697989

ABSTRACT

Detecting early-stage esophageal squamous cell carcinoma (ESCC) and precancerous lesions is critical for improving survival. Here, we conduct whole-genome bisulfite sequencing (WGBS) on 460 cfDNA samples from patients with non-metastatic ESCC or precancerous lesions and matched healthy controls. We develop an expanded multimodal analysis (EMMA) framework to simultaneously identify cfDNA methylation, copy number variants (CNVs), and fragmentation markers in cfDNA WGBS data. cfDNA methylation markers are the earliest and most sensitive, detectable in 70% of ESCCs and 50% of precancerous lesions, and associated with molecular subtypes and tumor microenvironments. CNVs and fragmentation features show high specificity but are linked to late-stage disease. EMMA significantly improves detection rates, increasing AUCs from 0.90 to 0.99, and detects 87% of ESCCs and 62% of precancerous lesions with >95% specificity in validation cohorts. Our findings demonstrate the potential of multimodal analysis of cfDNA methylome for early detection and monitoring of molecular characteristics in ESCC.


Subject(s)
Biomarkers, Tumor , DNA Copy Number Variations , DNA Methylation , Early Detection of Cancer , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Precancerous Conditions , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/diagnosis , Precancerous Conditions/genetics , Precancerous Conditions/diagnosis , Precancerous Conditions/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Male , Early Detection of Cancer/methods , Female , Biomarkers, Tumor/genetics , Middle Aged , Aged , Epigenome , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Whole Genome Sequencing/methods , Tumor Microenvironment/genetics
19.
Pest Manag Sci ; 80(8): 4110-4124, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38578650

ABSTRACT

BACKGROUND: Bacillus, as a plant-growth-promoting rhizobacteria, can enhance the resistance of plants to phytopathogens. In our study, Bacillus strains showing excellent biocontrol were screened and used to control ginkgo leaf blight (Alternaria tenuissima). RESULTS: Four biocontrol Bacillus strains-Bsa537, Bam337, Bso544, and Bsu503-were selected from 286 isolates based on their capacity to inhibit pathogens and promote plant growth. The four Bacillus strains significantly improved the resistance of ginkgo to leaf blight. This was especially the case when the four strains were used as a mixture, which contributed to a decrease in lesion area of >40%. Hence, a mixture of Bacillus strains was used to control ginkgo leaf blight in the field. Treatment efficiency varied from 30% to 100% (average 81.5%) and was higher than that of the control (-2% to -18%, average - 8.5%); the antioxidant capacity of the treated ginkgo was also stronger. In addition, ginkgo biomass increased as a result of treatment with the Bacillus mixture, including leaf weight, area, thickness, number of lateral roots and root weight. Furthermore, the Bacillus mixture improved the ginkgo rhizosphere soil by boosting the number of beneficial microorganisms, lowering the number of pathogens and hastening soil catabolism. CONCLUSION: The Bacillus mixture improved the health status of ginkgo by protecting it from pathogen attack, promoting its growth and improving the microorganism community in the rhizosphere. This work closes a technological gap in the biological control of ginkgo leaf blight, investigates application methods for compound Bacillus biofertilizers and establishes a framework for the popularity and commercialization of these products. © 2024 Society of Chemical Industry.


Subject(s)
Alternaria , Bacillus , Ginkgo biloba , Plant Diseases , Ginkgo biloba/microbiology , Bacillus/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Alternaria/physiology , Alternaria/drug effects , Disease Resistance , Plant Leaves , Pest Control, Biological/methods
20.
Horm Metab Res ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38574667

ABSTRACT

The aim of the study was to explore the clinical features related to early hypothyroidism and the relationship between the changes of thyrotropin receptor antibodies (TRAb) and early hypothyroidism in the course of 131I treatment for Graves' disease. This study was a retrospective observation, including 226 patients who received the first 131I treatment. The general information and laboratory tests were collected before and after 131I treatment, and the laboratory data affecting the difference in disease outcome were analyzed. According to the changes of antibodies in the third month, whether the changes of antibodies were involved in the occurrence of early-onset hypothyroidism was analyzed. Early onset hypothyroidism occurred in 165 of 226 patients, and the results showed that the incidence of early hypothyroidism was higher in patients with low baseline TRAb level (p=0.03) and increased TRAb after treatment (p=0.007). Both baseline TRAb levels (p<0.001) and the 24-hour iodine uptake rate (p=0.004) are significant factors influencing the changes in TRAb. The likelihood of a rise in TRAb was higher when the baseline TRAb was less than 18.55 U/l and the 24-hour iodine uptake level exceeded 63.61%. Low baseline and elevated post-treatment levels of TRAb were significantly associated with early-onset hypothyroidism after 131I treatment. Monitoring this index during RAI treatment is helpful in identifying early-onset hypothyroidism and mastering the clinical outcome and prognosis of Graves' disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...