Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Curr Treat Options Oncol ; 24(10): 1451-1471, 2023 Oct.
Article En | MEDLINE | ID: mdl-37561382

OPINION STATEMENT: Prostate cancer (PCa) is the second most diagnosed malignant neoplasm and is one of the leading causes of cancer-related death in men worldwide. Despite significant advances in screening and treatment of PCa, given the heterogeneity of this disease, optimal personalized therapeutic strategies remain limited. However, emerging predictive and prognostic biomarkers based on individual patient profiles in combination with computer-assisted diagnostics have the potential to guide precision medicine, where patients may benefit from therapeutic approaches optimally suited to their disease. Also, the integration of genotypic and phenotypic diagnostic methods is supporting better informed treatment decisions. Focusing on advanced PCa, this review discusses polygenic risk scores for screening of PCa and common genomic aberrations in androgen receptor (AR), PTEN-PI3K-AKT, and DNA damage response (DDR) pathways, considering clinical implications for diagnosis, prognosis, and treatment prediction. Furthermore, we evaluate liquid biopsy, protein biomarkers such as serum testosterone levels, SLFN11 expression, total alkaline phosphatase (tALP), neutrophil-to-lymphocyte ratio (NLR), tissue biopsy, and advanced imaging tools, summarizing current phenotypic biomarkers and envisaging more effective utilization of diagnostic and prognostic biomarkers in advanced PCa. We conclude that prognostic and treatment predictive biomarker discovery can improve the management of patients, especially in metastatic stages of advanced PCa. This will result in decreased mortality and enhanced quality of life and help design a personalized treatment regimen.

2.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37480151

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

3.
Sci Rep ; 12(1): 16159, 2022 09 28.
Article En | MEDLINE | ID: mdl-36171234

Androgen receptor variant 7 (AR-V7) is an important biomarker to guide treatment options for castration-resistant prostate cancer (CRPC) patients. Its detectability in circulating tumour cells (CTCs) opens non-invasive diagnostic avenues. While detectable at the transcript level, AR-V7 protein detection in CTCs may add additional information and clinical relevance. The aim of this study was to compare commercially available anti-AR-V7 antibodies and establish reliable AR-V7 immunocytostaining applicable to CTCs from prostate cancer (PCa) patients. We compared seven AR-V7 antibodies by western blotting and immmunocytostaining using a set of PCa cell lines with known AR/AR-V7 status. The emerging best antibody was validated for detection of CRPC patient CTCs enriched by negative depletion of leucocytes. The anti-AR-V7 antibody, clone E308L emerged as the best antibody in regard to signal to noise ratio with a specific nuclear signal. Moreover, this antibody detects CRPC CTCs more efficiently compared to an antibody previously shown to detect AR-V7 CTCs. We have determined the best antibody for AR-V7 detection of CTCs, which will open future studies to correlate AR-V7 subcellular localization and potential co-localization with other proteins and cellular structures to patient outcomes.


Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Cell Count , Humans , Male , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
4.
Cancer Discov ; 12(8): 1847-1859, 2022 08 05.
Article En | MEDLINE | ID: mdl-35736000

ABSTRACT: Phenotypic plasticity describes the ability of cancer cells to undergo dynamic, nongenetic cell state changes that amplify cancer heterogeneity to promote metastasis and therapy evasion. Thus, cancer cells occupy a continuous spectrum of phenotypic states connected by trajectories defining dynamic transitions upon a cancer cell state landscape. With technologies proliferating to systematically record molecular mechanisms at single-cell resolution, we illuminate manifold learning techniques as emerging computational tools to effectively model cell state dynamics in a way that mimics our understanding of the cell state landscape. We anticipate that "state-gating" therapies targeting phenotypic plasticity will limit cancer heterogeneity, metastasis, and therapy resistance. SIGNIFICANCE: Nongenetic mechanisms underlying phenotypic plasticity have emerged as significant drivers of tumor heterogeneity, metastasis, and therapy resistance. Herein, we discuss new experimental and computational techniques to define phenotypic plasticity as a scaffold to guide accelerated progress in uncovering new vulnerabilities for therapeutic exploitation.


Epithelial-Mesenchymal Transition , Neoplasms , Adaptation, Physiological , Humans , Neoplasms/drug therapy
5.
Cell Syst ; 9(5): 496-507.e5, 2019 11 27.
Article En | MEDLINE | ID: mdl-31606369

Although F-actin has a large number of binding partners and regulators, the number of phenotypic states available to the actin cytoskeleton is unknown. Here, we quantified 74 features defining filamentous actin (F-actin) and cellular morphology in >25 million cells after treatment with a library of 114,400 structurally diverse compounds. After reducing the dimensionality of these data, only ∼25 recurrent F-actin phenotypes emerged, each defined by distinct quantitative features that could be machine learned. We identified 2,003 unknown compounds as inducers of actin-related phenotypes, including two that directly bind the focal adhesion protein, talin. Moreover, we observed that compounds with distinct molecular mechanisms could induce equivalent phenotypes and that initially divergent cellular responses could converge over time. These findings suggest a conceptual parallel between the actin cytoskeleton and gene regulatory networks, where the theoretical plasticity of interactions is nearly infinite, yet phenotypes in vivo are constrained into a limited subset of practicable configurations.


Actin Cytoskeleton/chemistry , Actins/chemistry , Adaptation, Physiological/physiology , Actin Cytoskeleton/physiology , Actins/metabolism , Amino Acid Sequence , Cell Adhesion/physiology , Cell Line, Tumor , Cytoskeleton/metabolism , Female , High-Throughput Screening Assays/methods , Humans , Protein Binding , Talin/metabolism
6.
J Cell Biol ; 218(7): 2086-2095, 2019 07 01.
Article En | MEDLINE | ID: mdl-31208994

An understanding of the mechanisms whereby cell adhesion complexes (ACs) relay signals bidirectionally across the plasma membrane is necessary to interpret the role of adhesion in regulating migration, differentiation, and growth. A range of AC types has been defined, but to date all have similar compositions and are dependent on a connection to the actin cytoskeleton. Recently, a new class of AC has been reported that normally lacks association with both the cytoskeleton and integrin-associated adhesome components, but is rich in components of the clathrin-mediated endocytosis machinery. The characterization of this new type of adhesion structure, which is emphasized by mitotic cells and cells in long-term culture, identifies a hitherto underappreciated link between the adhesion machinery and clathrin structures at the plasma membrane. While this discovery has implications for how ACs are assembled and disassembled, it raises many other issues. Consequently, to increase awareness within the field, and stimulate research, we explore a number of the most significant questions below.


Actin Cytoskeleton/genetics , Cell Adhesion/genetics , Cell Membrane/genetics , Clathrin/genetics , Actin Cytoskeleton/chemistry , Animals , Cell Differentiation/genetics , Cell Membrane/chemistry , Cell Movement/genetics , Cell Proliferation/genetics , Humans , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Mitosis/genetics
7.
Curr Opin Chem Biol ; 51: 40-47, 2019 08.
Article En | MEDLINE | ID: mdl-30901618

The actin cytoskeleton is dysregulated in cancer, yet this critical cellular machinery has not translated as a druggable clinical target due to cardio-toxic side-effects. Many actin regulators are also considered undruggable, being structural proteins lacking clear functional sites suitable for targeted drug design. In this review, we discuss opportunities and challenges associated with drugging the actin cytoskeleton through its structural regulators, taking tropomyosins as a target example. In particular, we highlight emerging data acquisition and analysis trends driving phenotypic, imaging-based compound screening. Finally, we consider how the confluence of these trends is now bringing functionally integral machineries such as the actin cytoskeleton, and associated structural regulatory proteins, into an expanded repertoire of druggable targets with previously unexploited clinical potential.


Actin Cytoskeleton/metabolism , Animals , Humans , Phenotype , Tropomyosin/metabolism
8.
Nat Cell Biol ; 20(11): 1290-1302, 2018 11.
Article En | MEDLINE | ID: mdl-30361699

Adhesion to the extracellular matrix persists during mitosis in most cell types. However, while classical adhesion complexes, such as focal adhesions, do and must disassemble to enable mitotic rounding, the mechanisms of residual mitotic cell-extracellular matrix adhesion remain undefined. Here, we identify 'reticular adhesions', a class of adhesion complex that is mediated by integrin αvß5, formed during interphase, and preserved at cell-extracellular matrix attachment sites throughout cell division. Consistent with this role, integrin ß5 depletion perturbs mitosis and disrupts spatial memory transmission between cell generations. Reticular adhesions are morphologically and dynamically distinct from classical focal adhesions. Mass spectrometry defines their unique composition, enriched in phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)-binding proteins but lacking virtually all consensus adhesome components. Indeed, reticular adhesions are promoted by PtdIns(4,5)P2, and form independently of talin and F-actin. The distinct characteristics of reticular adhesions provide a solution to the problem of maintaining cell-extracellular matrix attachment during mitotic rounding and division.


Cell-Matrix Junctions/metabolism , Extracellular Matrix/metabolism , Focal Adhesions/metabolism , Mitosis , A549 Cells , Actins/metabolism , Animals , Cell Line, Tumor , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Integrin beta Chains/metabolism , MCF-7 Cells , Microscopy, Confocal , Phosphatidylinositol 4,5-Diphosphate/metabolism , Talin/metabolism
9.
EMBO J ; 37(17)2018 09 03.
Article En | MEDLINE | ID: mdl-30049714

Membrane blebbing-dependent (blebby) amoeboid migration can be employed by lymphoid and cancer cells to invade 3D-environments. Here, we reveal a mechanism by which the small GTPase RhoB controls membrane blebbing and blebby amoeboid migration. Interestingly, while all three Rho isoforms (RhoA, RhoB and RhoC) regulated amoeboid migration, each controlled motility in a distinct manner. In particular, RhoB depletion blocked membrane blebbing in ALL (acute lymphoblastic leukaemia), melanoma and lung cancer cells as well as ALL cell amoeboid migration in 3D-collagen, while RhoB overexpression enhanced blebbing and 3D-collagen migration in a manner dependent on its plasma membrane localization and down-stream effectors ROCK and Myosin II RhoB localization was controlled by endosomal trafficking, being internalized via Rab5 vesicles and then trafficked either to late endosomes/lysosomes or to Rab11-positive recycling endosomes, as regulated by KIF13A. Importantly, KIF13A depletion not only inhibited RhoB plasma membrane localization, but also cell membrane blebbing and 3D-migration of ALL cells. In conclusion, KIF13A-mediated endosomal trafficking modulates RhoB plasma membrane localization to control membrane blebbing and blebby amoeboid migration.


Cell Membrane Structures/metabolism , Cell Movement , Kinesins/metabolism , rhoB GTP-Binding Protein/metabolism , Cell Line, Tumor , Cell Membrane Structures/genetics , Collagen/genetics , Collagen/metabolism , Endosomes/genetics , Endosomes/metabolism , Humans , Kinesins/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , rhoB GTP-Binding Protein/genetics
10.
J Cell Biol ; 217(6): 1929-1940, 2018 06 04.
Article En | MEDLINE | ID: mdl-29632027

Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive ß1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive ß1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation.


Focal Adhesions/metabolism , Integrin beta1/metabolism , Cell Line, Tumor , Cytoskeletal Proteins/metabolism , Humans , Protein Transport , Talin/metabolism , Vinculin/metabolism
11.
Methods Mol Biol ; 1749: 119-134, 2018.
Article En | MEDLINE | ID: mdl-29525994

Cell migration is a dynamic process that emerges from fine-tuned networks coordinated in three-dimensional space, spanning molecular, subcellular, and cellular scales, and over multiple temporal scales, from milliseconds to days. Understanding how cell migration arises from this complexity requires data collection and analyses that quantitatively integrate these spatial and temporal scales. To meet this need, we have combined quantitative live and fixed cell fluorescence microscopy, customized image analysis tools, multivariate statistical methods, and mathematical modeling. Collectively, this constitutes the systems microscopy strategy that we have applied to dissect how cells organize themselves to migrate. In this overview, we highlight key principles, concepts, and components of our systems microscopy methodology, and exemplify what we have learnt so far and where this approach may lead.


Cell Movement/physiology , Microscopy, Fluorescence/methods , Systems Biology/methods , Animals , Cell Line , Cell Movement/genetics , Humans , Models, Theoretical , Signal Transduction/genetics , Signal Transduction/physiology
12.
Elife ; 5: e11384, 2016 Jan 29.
Article En | MEDLINE | ID: mdl-26821527

Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration.


Cell Movement , Cytological Techniques/methods , Mesoderm/physiology , Optical Imaging/methods , Single-Cell Analysis/methods , Cell Line , Humans , Spatio-Temporal Analysis
13.
PLoS One ; 10(8): e0135204, 2015.
Article En | MEDLINE | ID: mdl-26248038

Cell migration is heavily interconnected with plasma membrane protrusion and retraction (collectively termed "membrane dynamics"). This makes it difficult to distinguish regulatory mechanisms that differentially influence migration and membrane dynamics. Yet such distinctions may be valuable given evidence that cancer cell invasion in 3D may be better predicted by 2D membrane dynamics than by 2D cell migration, implying a degree of functional independence between these processes. Here, we applied multi-scale single cell imaging and a systematic statistical approach to disentangle regulatory associations underlying either migration or membrane dynamics. This revealed preferential correlations between membrane dynamics and F-actin features, contrasting with an enrichment of links between cell migration and adhesion complex properties. These correlative linkages were often non-linear and therefore context-dependent, strengthening or weakening with spontaneous heterogeneity in cell behavior. More broadly, we observed that slow moving cells tend to increase in area, while fast moving cells tend to shrink, and that the size of dynamic membrane domains is independent of cell area. Overall, we define macromolecular features preferentially associated with either cell migration or membrane dynamics, enabling more specific interrogation and targeting of these processes in future.


Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cell-Matrix Junctions/metabolism , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Actin Cytoskeleton/ultrastructure , Actins/metabolism , Actins/ultrastructure , Cell Adhesion , Cell Line, Tumor , Cell Membrane/ultrastructure , Cell Movement , Cell-Matrix Junctions/ultrastructure , Epithelial Cells/ultrastructure , Extracellular Matrix/ultrastructure , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Membrane Fluidity , Microscopy, Confocal , Paxillin/genetics , Paxillin/metabolism , Plasmids/chemistry , Plasmids/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/ultrastructure , Transfection
14.
Nat Commun ; 6: 7524, 2015 Jun 25.
Article En | MEDLINE | ID: mdl-26109125

Cell-matrix adhesions are central mediators of mechanotransduction, yet the interplay between force and adhesion regulation remains unclear. Here we use live cell imaging to map time-dependent cross-correlations between vinculin-mediated tension and adhesion complex area, revealing a plastic, context-dependent relationship. Interestingly, while an expected positive cross-correlation dominated in mid-sized adhesions, small and large adhesions display negative cross-correlation. Furthermore, although large changes in adhesion complex area follow vinculin-mediated tension alterations, small increases in area precede vinculin-mediated tension dynamics. Modelling based on this mapping of the vinculin-mediated tension-adhesion complex area relationship confirms its biological validity, and indicates that this relationship explains adhesion size and lifetime limits, keeping adhesions focal and transient. We also identify a subpopulation of steady-state adhesions whose size and vinculin-mediated tension become stabilized, and whose disassembly may be selectively microtubule-mediated. In conclusion, we define a plastic relationship between vinculin-mediated tension and adhesion complex area that controls fundamental cell-matrix adhesion properties.


Cell Adhesion/physiology , Vinculin/metabolism , Biomechanical Phenomena , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Gene Expression Regulation/physiology , Humans , Microtubule-Associated Proteins , Plant Proteins , Time Factors , Vinculin/genetics
15.
Integr Biol (Camb) ; 7(10): 1171-85, 2015 Oct.
Article En | MEDLINE | ID: mdl-26000342

Talin is a key cell-matrix adhesion component with a central role in regulating adhesion complex maturation, and thereby various cellular properties including adhesion and migration. However, knockdown studies have produced inconsistent findings regarding the functional influence of talin in these processes. Such discrepancies may reflect non-monotonic responses to talin expression-level variation that are not detectable via canonical "binary" comparisons of aggregated control versus knockdown cell populations. Here, we deployed an "analogue" approach to map talin influence across a continuous expression-level spectrum, which we extended with sub-maximal RNAi-mediated talin depletion. Applying correlative imaging to link live cell and fixed immunofluorescence data on a single cell basis, we related per cell talin levels to per cell measures quantitatively defining an array of cellular properties. This revealed both linear and non-linear correspondences between talin expression and cellular properties, including non-monotonic influences over cell shape, adhesion complex-F-actin association and adhesion localization. Furthermore, we demonstrate talin level-dependent changes in networks of correlations among adhesion/migration properties, particularly in relation to cell migration speed. Importantly, these correlation networks were strongly affected by talin expression heterogeneity within the natural range, implying that this endogenous variation has a broad, quantitatively detectable influence. Overall, we present an accessible analogue method that reveals complex dependencies on talin expression-level, thereby establishing a framework for considering non-linear and non-monotonic effects of protein expression-level heterogeneity in cellular systems.


Talin/physiology , Biomechanical Phenomena , Cell Adhesion/physiology , Cell Line , Cell Movement/physiology , Gene Expression , Gene Knockdown Techniques , Humans , Microscopy, Confocal , Models, Biological , Nonlinear Dynamics , RNA Interference , RNA, Small Interfering/genetics , Single-Cell Analysis , Systems Biology , Talin/antagonists & inhibitors , Talin/genetics
16.
J Leukoc Biol ; 96(3): 481-9, 2014 Sep.
Article En | MEDLINE | ID: mdl-24899587

This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions.


Adjuvants, Immunologic/pharmacology , Cell Culture Techniques , Dendritic Cells/drug effects , Lung/immunology , Time-Lapse Imaging/methods , Cell Communication , Cell Line , Cell Movement , Chemokine CCL2/pharmacology , Coculture Techniques , Culture Media, Conditioned , Cytokines/biosynthesis , Cytokines/genetics , Dendritic Cells/cytology , Dendritic Cells/immunology , Epithelial Cells/cytology , Fibroblasts/cytology , Flow Cytometry , Gene Expression Profiling , Genes, Reporter , Humans , Inflammation/chemically induced , Inflammation/immunology , Lipopeptides/pharmacology , Lipopolysaccharides/pharmacology , Lung/cytology , Models, Immunological , Monocytes/cytology , Recombinant Proteins/pharmacology
17.
PLoS One ; 9(2): e90593, 2014.
Article En | MEDLINE | ID: mdl-24587399

Heterogeneous and dynamic single cell migration behaviours arise from a complex multi-scale signalling network comprising both molecular components and macromolecular modules, among which cell-matrix adhesions and F-actin directly mediate migration. To date, the global wiring architecture characterizing this network remains poorly defined. It is also unclear whether such a wiring pattern may be stable and generalizable to different conditions, or plastic and context dependent. Here, synchronous imaging-based quantification of migration system organization, represented by 87 morphological and dynamic macromolecular module features, and migration system behaviour, i.e., migration speed, facilitated Granger causality analysis. We thereby leveraged natural cellular heterogeneity to begin mapping the directionally specific causal wiring between organizational and behavioural features of the cell migration system. This represents an important advance on commonly used correlative analyses that do not resolve causal directionality. We identified organizational features such as adhesion stability and adhesion F-actin content that, as anticipated, causally influenced cell migration speed. Strikingly, we also found that cell speed can exert causal influence over organizational features, including cell shape and adhesion complex location, thus revealing causality in directions contradictory to previous expectations. Importantly, by comparing unperturbed and signalling-modulated cells, we provide proof-of-principle that causal interaction patterns are in fact plastic and context dependent, rather than stable and generalizable.


Cell Movement/physiology , Macromolecular Substances/metabolism , Signal Transduction/physiology , Single-Cell Analysis/methods , Actins/genetics , Actins/metabolism , Cell Adhesion/physiology , Cell Line, Tumor , Cell Shape/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Confocal , Models, Biological , Multivariate Analysis , Paxillin/genetics , Paxillin/metabolism , Principal Component Analysis
18.
EMBO J ; 32(1): 86-99, 2013 Jan 09.
Article En | MEDLINE | ID: mdl-23222484

Infection of macrophages by bacterial pathogens can trigger Toll-like receptor (TLR) activation as well as Nod-like receptors (NLRs) leading to inflammasome formation and cell death dependent on caspase-1 (pyroptosis). Complicating the study of inflammasome activation is priming. Here, we develop a priming-free NLRC4 inflammasome activation system to address the necessity and role of priming in pyroptotic cell death and damage-associated molecular pattern (DAMP) release. We find pyroptosis is not dependent on priming and when priming is re-introduced pyroptosis is unaffected. Cells undergoing unprimed pyroptosis appear to be independent of mitochondrial involvement and do not produce inflammatory cytokines, nitrous oxide (NO), or reactive oxygen species (ROS). Nevertheless, they undergo an explosive cell death releasing a chemotactic isoform of the DAMP high mobility group protein box 1 (HMGB1). Importantly, priming through surface TLRs but not endosomal TLRs during pyroptosis leads to the release of a new TLR4-agonist cysteine redox isoform of HMGB1. These results show that pyroptosis is dominant to priming signals and indicates that metabolic changes triggered by priming can affect how cell death is perceived by the immune system.


Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/metabolism , Caspase 1/metabolism , HMGB1 Protein/metabolism , Macrophages/immunology , Neuronal Apoptosis-Inhibitory Protein/metabolism , Toll-Like Receptors/metabolism , Acetylation , Amino Acid Sequence , Animals , Apoptosis , Apoptosis Regulatory Proteins/agonists , Apoptosis Regulatory Proteins/immunology , Bacterial Proteins/metabolism , Calcium-Binding Proteins/agonists , Calcium-Binding Proteins/immunology , Cell Death , Cell Line , Gene Expression , HMGB1 Protein/analysis , Host-Pathogen Interactions , Inflammasomes/immunology , Inflammasomes/metabolism , Macrophage Activation/physiology , Macrophages/microbiology , Macrophages/physiology , Mice , Molecular Sequence Data , Neuronal Apoptosis-Inhibitory Protein/agonists , Neuronal Apoptosis-Inhibitory Protein/immunology , Protein Isoforms/metabolism , Signal Transduction , Toll-Like Receptors/immunology
19.
J Cell Sci ; 123(Pt 20): 3525-34, 2010 Oct 15.
Article En | MEDLINE | ID: mdl-20930142

Phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] is a key regulator of cell signaling that acts by recruiting proteins to the cell membrane, such as at the leading edge during cell migration. Here, we show that PtdIns (3,4,5)P3 plays a central role in filopodia formation via the binding of myosin-X (Myo10), a potent promoter of filopodia. We found that the second pleckstrin homology domain (Myo10-PH2) of Myo10 specifically binds to PtdIns(3,4,5)P3, and that disruption of this binding led to impairment of filopodia and partial re-localization of Myo10 to microtubule-associated Rab7-positive endosomal vesicles. Given that the localization of Myo10 was dynamically restored to filopodia upon reinstatement of PtdIns(3,4,5)P3-binding, our results indicate that PtdIns(3,4,5)P3 binding to the Myo10-PH2 domain is involved in Myo10 trafficking and regulation of filopodia dynamics.


Myosins/metabolism , Phosphatidylinositol Phosphates/metabolism , Pseudopodia/metabolism , Animals , COS Cells , Chlorocebus aethiops , Endosomes/metabolism , HeLa Cells , Humans , Immunoprecipitation , Protein Binding , Protein Structure, Tertiary/genetics , Protein Structure, Tertiary/physiology
20.
Mol Biol Cell ; 21(19): 3317-29, 2010 Oct 01.
Article En | MEDLINE | ID: mdl-20719960

Cell-to-extracellular matrix adhesion is regulated by a multitude of pathways initiated distally to the core cell-matrix adhesion machinery, such as via growth factor signaling. In contrast to these extrinsically sourced pathways, we now identify a regulatory pathway that is intrinsic to the core adhesion machinery, providing an internal regulatory feedback loop to fine tune adhesion levels. This autoinhibitory negative feedback loop is initiated by cell adhesion to vitronectin, leading to PAK4 activation, which in turn limits total cell-vitronectin adhesion strength. Specifically, we show that PAK4 is activated by cell attachment to vitronectin as mediated by PAK4 binding partner integrin αvß5, and that active PAK4 induces accelerated integrin αvß5 turnover within adhesion complexes. Accelerated integrin turnover is associated with additional PAK4-mediated effects, including inhibited integrin αvß5 clustering, reduced integrin to F-actin connectivity and perturbed adhesion complex maturation. These specific outcomes are ultimately associated with reduced cell adhesion strength and increased cell motility. We thus demonstrate a novel mechanism deployed by cells to tune cell adhesion levels through the autoinhibitory regulation of integrin adhesion.


Feedback, Physiological , Receptors, Vitronectin/metabolism , p21-Activated Kinases/metabolism , Actins/metabolism , Animals , COS Cells , Cell Adhesion , Cell Line, Tumor , Cell Movement , Chlorocebus aethiops , Enzyme Activation , Extracellular Matrix/metabolism , Gene Knockdown Techniques , Humans , Vitronectin/metabolism
...