Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2403093, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896801

ABSTRACT

Creatine kinases are essential for maintaining cellular energy balance by facilitating the reversible transfer of a phosphoryl group from ATP to creatine, however, their role in mitochondrial ATP production remains unknown. This study shows creatine kinases, including CKMT1A, CKMT1B, and CKB, are highly expressed in cells relying on the mitochondrial F1F0 ATP synthase for survival. Interestingly, silencing CKB, but not CKMT1A or CKMT1B, leads to a loss of sensitivity to the inhibition of F1F0 ATP synthase in these cells. Mechanistically, CKB promotes mitochondrial ATP but reduces glycolytic ATP production by suppressing mitochondrial calcium (mCa2+) levels, thereby preventing the activation of mitochondrial permeability transition pore (mPTP) and ensuring efficient mitochondrial ATP generation. Further, CKB achieves this regulation by suppressing mCa2+ levels through the inhibition of AKT activity. Notably, the CKB-AKT signaling axis boosts mitochondrial ATP production in cancer cells growing in a mouse tumor model. Moreover, this study also uncovers a decline in CKB expression in peripheral blood mononuclear cells with aging, accompanied by an increase in AKT signaling in these cells. These findings thus shed light on a novel signaling pathway involving CKB that directly regulates mitochondrial ATP production, potentially playing a role in both pathological and physiological conditions.

2.
Front Immunol ; 14: 1166377, 2023.
Article in English | MEDLINE | ID: mdl-37063864

ABSTRACT

Background: Glioma is the most lethal and most aggressive brain cancer, and currently there is no effective treatment. Cancer immunotherapy is an advanced therapy by manipulating immune cells to attack cancer cells and it has been studied a lot in glioma treatment. Targeting the immune checkpoint CD47 or blocking the CD47-SIRPα axis can effectively eliminate glioma cancer cells but also brings side effects such as anemia. Glutaminyl-peptide cyclotransferase-like protein (QPCTL) catalyzes the pyroglutamylation of CD47 and is crucial for the binding between CD47 and SIRPα. Further study found that loss of intracellular QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. However, the role of QPCTL in glioma and the relationship between its expression and clinical outcomes remains unclear. Deciphering the role of QPCTL in glioma will provide a promising therapy for glioma cancer immunotherapy. Methods: QPCTL expression in glioma tissues and normal adjacent tissues was primarily analyzed in The Cancer Genome Atlas (TCGA) database, and further validated in another independent cohort from the Gene Expression Omnibus (GEO) database, Chinese Glioma Genome Atlas (CGGA), and Human Protein Atlas (HPA). The relationships between QPCTL expression and clinicopathologic parameters and overall survival (OS) were assessed using multivariate methods and Kaplan-Meier survival curves. And the proteins network with which QPCTL interacted was built using the online STRING website. Meanwhile, we use Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA) databases to investigate the relationships between QPCTL expression and infiltrated immune cells and their corresponding gene marker sets. We analyzed the Differentially Expressed Genes (DEGs) including GO/KEGG and Gene Set Enrichment Analysis (GSEA) based on QPCTL-high and -low expression tumors. Results: In contrast to normal tissue, QPCTL expression was higher in glioma tumor tissue (p < 0.05). Higher QPCTL expression was closely associated with high-grade malignancy and advanced tumor stage. Univariate and multivariate analysis indicated the overall survival of glioma patients with higher QPCTL expression is shorter than those with lower QPCTL expression (p < 0.05). Glioma with QPCTL deficiency presented the paucity of infiltrated immune cells and their matching marker sets. Moreover, QPCTL is essential for glioma cell proliferation and tumor growth and is a positive correlation with glioma cell stemness. Conclusion: High QPCTL expression predicts high grades of gliomas and poor prognosis with impaired infiltration of adaptive immune cells in the tumor microenvironment as well as higher cancer stemness. Moreover, targeting QPCTL will be a promising immunotherapy in glioma cancer treatment.


Subject(s)
Brain Neoplasms , Drug-Related Side Effects and Adverse Reactions , Glioma , Humans , CD47 Antigen , Glioma/genetics , Glioma/therapy , Immunotherapy , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Tumor Microenvironment
3.
Br J Pharmacol ; 180(8): 1132-1147, 2023 04.
Article in English | MEDLINE | ID: mdl-36479683

ABSTRACT

BACKGROUND AND PURPOSE: Intravenous infusion of chemotherapy drugs can cause severe chemotherapy-induced phlebitis (CIP) in patients. However, the underlying mechanism of CIP development remains unclear. EXPERIMENTAL APPROACH: RNA-sequencing analysis was used to identify potential disease targets in CIP. Guanylate binding protein-5 (GBP5) genetic deletion approaches also were used to investigate the role of GBP5 in NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in lipopolysaccharide (LPS) primed murine bone-marrow-derived macrophages (BMDMs) induced by vinorelbine (VIN) in vitro and in mouse models of VIN-induced CIP in vivo. The anti-CIP effect of aescin was evaluated, both in vivo and in vivo. KEY RESULTS: Here, we show that the expression of GBP5 was upregulated in human peripheral blood mononuclear cells from CIP patients. Genetic ablation of GBP5 in murine macrophages significantly alleviated VIN-induced CIP in the experimental mouse model. Mechanistically, GBP5 contributed to the inflammatory responses through activating NLRP3 inflammasome and driving the production of the inflammatory cytokine IL-1ß. Moreover, aescin, a mixture of triterpene saponins extracted from horse chestnut seed, can alleviate CIP by inhibiting the GBP5/NLRP3 axis. CONCLUSION AND IMPLICATIONS: These findings suggest that GBP5 is an important regulator of NLRP3 inflammasome in CIP mouse model. Our work further reveals that aescin may serve as a promising candidate in the clinical treatment of CIP.


Subject(s)
Antineoplastic Agents , Phlebitis , Humans , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Escin , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Interleukin-1beta/metabolism , GTP-Binding Proteins/metabolism
4.
Adv Sci (Weinh) ; : e2202642, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36382559

ABSTRACT

Lacking a clear understanding of the molecular mechanism determining cancer cell sensitivity to oxidative phosphorylation (OXPHOS) inhibition limits the development of OXPHOS-targeting cancer treatment. Here, cancer cell lines sensitive or resistant to OXPHOS inhibition are identified by screening. OXPHOS inhibition-sensitive cancer cells possess increased OXPHOS activity and silenced nicotinamide N-methyltransferase (NNMT) expression. NNMT expression negatively correlates with OXPHOS inhibition sensitivity and functionally downregulates the intracellular levels of S-adenosyl methionine (SAM). Expression of DNA methyltransferase 1 (DNMT1), a SAM consumer, positively correlates with OXPHOS inhibition sensitivity. NNMT overexpression and DNMT1 inhibition render OXPHOS inhibition-sensitive cancer cells resistant. Importantly, treatments of OXPHOS inhibitors (Gboxin and Berberine) hamper the growth of mouse tumor xenografts by OXPHOS inhibition sensitive but not resistant cancer cells. What's more, the retrospective study of 62 tumor samples from a clinical trial demonstrates that administration of Berberine reduces the tumor recurrence rate of NNMTlow /DNMT1high but not NNMThigh /DNMT1low colorectal adenomas (CRAs). These results thus reveal a critical role of the NNMT-DNMT1 axis in determining cancer cell reliance on mitochondrial OXPHOS and suggest that NNMT and DNMT1 are faithful biomarkers for OXPHOS-targeting cancer therapies.

5.
Sci Total Environ ; 805: 150257, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34536870

ABSTRACT

Drought incidents and the pressure on water resources have increased in recent years, which has threatened sustainable development. Recently, research has been conducted on drought propagation. However, few studies have investigated the characteristics and mechanisms of drought propagation in plateau mountainous regions with complex topography, which limits the efforts to mitigate drought. We used the Longchuan River Basin (LRB) in Southwest China as a case study to analyze the spatiotemporal variations of meteorological, hydrological, and agricultural droughts and the process of drought propagation in plateau mountainous regions. Our results demonstrated that: (1) the variation in the intensity, frequency, and coverage of droughts indicated that meteorological droughts and hydrological droughts were increasingly serious, while agricultural droughts were eased from 2000 to 2015; (2) the propagation time between different types of droughts was approximately 2 months; and (3) the propagation sequences of droughts varied by altitude; in particular, agricultural droughts propagated to hydrological droughts at higher altitudes, and the opposite occurred at lower altitudes. We concluded that elevation plays a critical role in the time-space differentiation of drought propagation in plateau mountains. More attention should be paid to the spatial differentiation of drought propagation based on land use under different topographic conditions. The results of this study can provide a new perspective for future drought propagation studies.


Subject(s)
Droughts , Hydrology , China , Meteorology , Rivers
6.
Chem Commun (Camb) ; 57(66): 8186-8189, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34313281

ABSTRACT

Controllable sulphur vacancies (Sv) confined in nanoporous ZnS nanoplates (Sv-ZnS) were prepared successfully via rapid heat treatment of ZnS(en)0.5 nanoplates. Sv with controllable concentrations originating from the in situ doping of N atoms endowed Sv-ZnS with a visible-light photocatalytic H2 production activity, having a positive linear correlation with Sv concentration.

7.
Molecules ; 23(7)2018 07 04.
Article in English | MEDLINE | ID: mdl-29973497

ABSTRACT

Schisandra chinensis (Turcz) Baill. is sufficiently well known as a medicinal plant worldwide, which modern research shows has many pharmacological activities such as hepatoprotective, anti-inflammatory effect, potent anti-HIV-1 activity, anti-tumor effect, and activity on the central nervous system. With considerable chemical investigation, three new triterpenoids (1⁻3), together with four known triterpenoids were isolated from the S. chinensis (Turcz) Baill. Their structures were elucidated by 1D- and 2D-NMR spectroscopic analyses, single-crystal X-ray diffraction and high-resolution mass spectroscopy, which were identified as Schisanlactone I (1), Schinalactone D, (2), Schisanlactone J, (3) Kadsuphilactone B (4), Schisanlactone C (5), Schisphendilactone B (6), and Schinchinenlactone A (7). The cytotoxicity of those compounds (1⁻7) was tested against Hep-G2 cell lines, but no apparent antitumor activity was observed at 50 µg/mL using MTT method.


Subject(s)
Schisandra/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification , Cell Survival/drug effects , Crystallography, X-Ray , Hep G2 Cells , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Plant Extracts/chemistry , Plant Leaves/chemistry , Triterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...