Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 264: 116667, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39146772

ABSTRACT

Developing the portable CRP detection technologies that are suitable for point-of-care (POC) and primary care management is of utmost importance, and advancing the electrochemical immunosensors hold promise for POC implementation. Nevertheless, non-specific adsorption of numerous interfering proteins in complex biological media contaminates immunosensors, thereby restricting the reliability in detection efficacy. In this study, a three-dimensional flower-leaf shape amyloid bovine serum albumin/gold nanoparticles/polyaniline (AL-BSA/AuNPs/PANI) coating on the surface of the electrode was developed, which demonstrated strong anti-adsorption properties against bovine serum albumin, plasma, and cells. The immunosensor exhibited a good linear relationship to CRP response, featuring a detection limit of 0.09 µg/mL, consistent with clinical reference range. In addition, the CRP immunosensor demonstrated excellent specificity in other inflammation-related proteins and commendable anti-interference performance for CRP detection in plasma and whole blood tests. Importantly, by combining the development of a USB flash disk-type portable electrochemical workstation with a reagent-free mode, the developed CRP electrochemical immunosensor delivered ideal results in clinical samples. The anti-fouling performance, sensitivity and specificity of the immunosensor, as well as its flexible test modes in clinical samples, provide important scientific basis for developing POC detection technologies of vital biomarkers in complex biological media.

2.
Anal Chem ; 96(33): 13379-13388, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39105793

ABSTRACT

Highly sensitive detection of low-frequency EGFR-L858R mutation is particularly important in guiding targeted therapy of nonsmall-cell lung carcinoma (NSCLC). To this end, a ligase chain reaction (LCR)-based electrochemical biosensor (e-LCR) with an inverted sandwich-type architecture was provided by combining a cooperation of lambda exonuclease-RecJf exonuclease (λ-RecJf exo). In this work, by designing a knife-like DNA substrate (an overhang ssDNA part referred to the "knife arm") and introducing the λ-RecJf exo, the unreacted DNA probes in the LCR were specially degraded while only the ligated products were preserved, after which the ligated knife-like DNA products were hybridized with capture probes on the gold electrode surface through the "knife arms", forming the inverted sandwich-type DNA structure and bringing the methylene blue-label close to the electrode surface to engender the electrical signal. Finally, the sensitivity of the e-LCR could be improved by 3 orders of magnitude with the help of the λ-RecJf exo, and due to the mutation recognizing in the ligation site of the employed ligase, this method could detect EGFR-L858R mutation down to 0.01%, along with a linear range of 1 fM-10 pM and a limit detection of 0.8 fM. Further, the developed method could distinguish between L858R positive and negative mutations in cultured cell samples, tumor tissue samples, and plasma samples, whose accuracy was verified by the droplet digital PCR, holding a huge potential in liquid biopsy for precisely guiding individualized-treatment of NSCLC patients with advantages of high sensitivity, low cost, and adaptability to point-of-care testing.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Electrochemical Techniques , ErbB Receptors , Exodeoxyribonucleases , Lung Neoplasms , Mutation , ErbB Receptors/genetics , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Biosensing Techniques , Ligase Chain Reaction , Limit of Detection , Viral Proteins
3.
Infection ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095667

ABSTRACT

BACKGROUND: Currently, there are hundreds of hematological parameters used for rapid diagnosis of neonatal sepsis, but there is no network meta-analysis to compare the diagnostic efficacy of these parameters. METHODS: We searched for literature on the diagnostic neonatal sepsis and selected 20 of the most common parameters to compare their diagnostic efficacy. We used Bayesian network meta-analysis, Frequentist network meta-analysis, and individual traditional diagnostic meta-analysis to analyze the data and verify the stability of the results. Based on the above analysis, we ranked the diagnostic efficacy of 20 parameters and searched for the optimal indicator. We also conducted subgroup analysis based on different designs. GRADE was used to evaluate the quality of evidence. RESULTS: 311 articles were included in the analysis, of which 206 articles were included in the network meta-analysis. Bayesian models fond the top three of the advantage index were P-SEP, SAA, and CD64. In Individual model, P-SEP, SAA, and CD64 had the best sensitivity; ABC, SAA, and P-SEP had the best specificity. Frequentist model showed that CD64, P-SEP, and IL-10 ranked in the top three for sensitivity, while P-SEP, ABC, and I/M in specificity. Overall, P-SEP, SAA, CD64, and PCT have good sensitivity and specificity among all the three methods. The results of subgroup analysis were consistent with the overall analysis. All evidence was mostly of moderate or low quality. CONCLUSIONS: P-SEP, SAA, CD64, and PCT have good diagnostic efficacy for neonatal sepsis. However, further studies are required to confirm these findings.

4.
Phytochemistry ; 225: 114171, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38844058

ABSTRACT

Seven undescribed abietane diterpenoids [abietamethinols A-G (1-7)] were isolated from the twigs and leaves of Isodon amethystoides. Their structures were elucidated on the basis of spectroscopic methods including 2D NMR, and they were further confirmed by X-ray crystallographic data. Lophanic acid was considered as the precursor of 1-7 in the biosynthesis pathway hypothesis. These compounds were evaluated for their cytotoxic, anti-bacterial and anti-AIV (avian influenza virus) activities. Compound 5 showed 42.9% inhibitory activity against the cancer cell line SMMC-7721 at the concentration of 40 µM, 3 and 4 could inhibit the bacterial growth of Streptococcus sobrinus by 55.3% and 63.2% at the concentrations of 148.6 and 141.9 µM, respectively, and 4 was demonstrated with antiviral activity against AIV with the inhibitory effect of 68.4% at 25 µM.


Subject(s)
Abietanes , Anti-Bacterial Agents , Antineoplastic Agents, Phytogenic , Antiviral Agents , Isodon , Microbial Sensitivity Tests , Abietanes/pharmacology , Abietanes/chemistry , Abietanes/isolation & purification , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Isodon/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Drug Screening Assays, Antitumor , Cell Line, Tumor , Structure-Activity Relationship , Plant Leaves/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Molecular Conformation , Influenza A virus/drug effects
5.
Int J Biol Macromol ; 273(Pt 2): 133164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878919

ABSTRACT

Obesity is a global health challenge that causes metabolic dysregulation and increases the risk of various chronic diseases. The gut microbiome is crucial in modulating host energy metabolism, immunity, and inflammation and is influenced by dietary factors. Gac fruit (Momordica cochinchinensis), widely consumed in Southeast Asia, has been proven to have various biological activities. However, the composition and effect of crude gac aril polysaccharides (GAP) on obesity and gut microbiota disturbed by high-fat diet (HFD) remain to be elucidated. Compositional analysis showed that GAP contains high oligosaccharides, with an average of 7-8 saccharide units. To mimic clinical obesity, mice were first made obese by feeding HFD for eight weeks. GAP intervention was performed from week 9 to week 20 in HFD-fed mice. Our results showed that GAP inhibited body weight gain, eWAT adipocyte hypertrophy, adipokine derangement, and hyperlipidemia in HFD-induced obese mice. GAP improved insulin sensitivity, impaired glucose tolerance, and hepatic steatosis. GAP modulated the gut microbiota composition and reversed the HFD-induced dysbiosis of at least 20 genera. Taken together, GAP improves metabolic health and modulates the gut microbiome to relieve obesity risk factors, demonstrating the potential of dietary GAP for treating obesity-associated disorders.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Obesity , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Obesity/etiology , Obesity/microbiology , Diet, High-Fat/adverse effects , Polysaccharides/pharmacology , Mice , Male , Metabolic Diseases/drug therapy , Metabolic Diseases/etiology , Dysbiosis , Mice, Inbred C57BL , Insulin Resistance
6.
Neurochem Int ; 176: 105743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641026

ABSTRACT

Neonatal brain inflammation produced by intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) results in long-lasting brain dopaminergic injury and motor disturbances in adult rats. The goal of the present work is to investigate the effect of neonatal systemic LPS exposure (1 or 2 mg/kg, i.p. injection in postnatal day 5, P5, male rats)-induced dopaminergic injury to examine methamphetamine (METH)-induced behavioral sensitization as an indicator of drug addiction. On P70, subjects underwent a treatment schedule of 5 once daily subcutaneous (s.c.) administrations of METH (0.5 mg/kg) (P70-P74) to induce behavioral sensitization. Ninety-six hours following the 5th treatment of METH (P78), the rats received one dose of 0.5 mg/kg METH (s.c.) to reintroduce behavioral sensitization. Hyperlocomotion is a critical index caused by drug abuse, and METH administration has been shown to produce remarkable locomotor-enhancing effects. Therefore, a random forest model was used as the detector to extract the feature interaction patterns among the collected high-dimensional locomotor data. Our approaches identified neonatal systemic LPS exposure dose and METH-treated dates as features significantly associated with METH-induced behavioral sensitization, reinstated behavioral sensitization, and perinatal inflammation in this experimental model of drug addiction. Overall, the analysis suggests that the implementation of machine learning strategies is sensitive enough to detect interaction patterns in locomotor activity. Neonatal LPS exposure also enhanced METH-induced reduction of dopamine transporter expression and [3H]dopamine uptake, reduced mitochondrial complex I activity, and elevated interleukin-1ß and cyclooxygenase-2 concentrations in the P78 rat striatum. These results indicate that neonatal systemic LPS exposure produces a persistent dopaminergic lesion leading to a long-lasting change in the brain reward system as indicated by the enhanced METH-induced behavioral sensitization and reinstated behavioral sensitization later in life. These findings indicate that early-life brain inflammation may enhance susceptibility to drug addiction development later in life, which provides new insights for developing potential therapeutic treatments for drug addiction.


Subject(s)
Animals, Newborn , Lipopolysaccharides , Machine Learning , Methamphetamine , Animals , Methamphetamine/pharmacology , Methamphetamine/toxicity , Rats , Male , Lipopolysaccharides/toxicity , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Encephalitis/chemically induced , Encephalitis/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Locomotion/drug effects , Locomotion/physiology , Female , Rats, Sprague-Dawley , Motor Activity/drug effects
7.
Mikrochim Acta ; 191(3): 170, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38427110

ABSTRACT

Gold nanostructures and a Nafion modified screen-printed carbon electrode (Nafion/AuNS/SPCE) were developed to assess the cell viability of Parkinson's disease (PD) cell models. The electrochemical measurement of cell viability was reflected by catecholamine neurotransmitter (represented by dopamine) secretion capacity, followed by a traditional tetrazolium-based colorimetric assay for confirmation. Due to the  capacity to synthesize, store, and release catecholamines as well as their unlimited homogeneous proliferation, and ease of manipulation, pheochromocytoma (PC12) cells were used for PD cell modeling. Commercial low-differentiated and highly-differentiated PC12 cells, and home-made nerve growth factor (NGF) induced low-differentiated PC12 cells (NGF-differentiated PC12 cells) were included in the modeling. This approach achieved sensitive and rapid determination of cellular modeling and intervention states. Notably, among the three cell lines, NGF-differentiated PC12 cells displayed the enhanced neurotransmitter secretion level accompanied with attenuated growth rate, incremental dendrites in number and length that were highly resemble with neurons. Therefore, it was selected as the PD-tailorable modeling cell line. In short, the electrochemical sensor can be used to sensitively determine the biological function of neuron-like PC12 cells with negligible destruction and to explore the protective and regenerative impact of various substances on nerve cell model.


Subject(s)
Adrenal Gland Neoplasms , Fluorocarbon Polymers , Parkinson Disease , Rats , Animals , Catecholamines/metabolism , PC12 Cells , Nerve Growth Factor , Drug Evaluation, Preclinical , Neurotransmitter Agents
8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-271824

ABSTRACT

<p><b>OBJECTIVE</b>To study the chemical constituents in the leaf of Ligustrum delavayanum Hariot.</p><p><b>METHOD</b>The constituents were isolated with column chromatographies and the structures were identified by MS, IR, UV and NMR.</p><p><b>RESULT</b>Four compounds were isolated and identified as beta-sitosterol, oleanic acid, 2 alpha-hydroxyursolic acid, and acteoside.</p><p><b>CONCLUSION</b>All the compounds were isolated from the plant for the first time.</p>


Subject(s)
Glucosides , Chemistry , Ligustrum , Chemistry , Oleanolic Acid , Chemistry , Phenols , Chemistry , Plant Leaves , Chemistry , Plants, Medicinal , Chemistry , Sitosterols , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL