Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.846
Filter
1.
Sci Total Environ ; 952: 175997, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39233071

ABSTRACT

Solving the challenges faced during the measurement of the cross-interface transfer of perfluoroalkyl acids (PFAAs) in lakes is crucial for clarifying environmental behaviours of these chemicals and their efficient governance. This study developed a multimedia fugacity model based on the quantitative water-air-sediment interaction (QWASI) covering abiotic/biotic matrices to investigate the cross-interface transfer and fate of PFAAs in Luoma Lake, a typical PFAA-contaminated shallow lake in eastern China. The accuracy and reliability of the established model were confirmed using Percent bias and Monte Carlo simulation, respectively. Using the QWASI model, the multimedia transfer of the PFAAs and their accumulation and persistence in different sub-compartments were described and measured, and the differences among individual PFAAs were explored. The simulation results showed that the sedimentation and resuspension of PFAAs were the most intense cross-interfacial transfers, and the sediments served as a chemical sink in the long term. A significant negative correlation of NC-F (the number of CF bonds) with the relative outflow flux (TW·out-ct) but a positive correlation with the relative net transfer across the interface between water and aquatic plants (Tp-ct) was detected, indicating that the PFAA migration capacity decreased but the bioaccumulation potential increased with the CF bond number. The persistence in water (Pw) of individual PFAAs ranged from 19.65d (PFOA) to 32.22d (PFOS), with an average of 26.15d; their persistence in sediment (Ps) ranged from 432d (PFBA) to 3216d (PFOS), with an average of 1524d, increasing linearly with an increase in NC-F. The water advection flows into and out of the lake (QW·in and QW·out), the PFAA concentration of water inflow (CW·in), and bioconcentration factor of aquatic plants (BCFp) were the primary parameters sensitive to PFAAs in all sub-compartments, which are essential indexes for exploring promising remediation pathways for lacustrine PFAA contamination based on the fugacity model simulation.


Subject(s)
Environmental Monitoring , Fluorocarbons , Lakes , Water Pollutants, Chemical , Lakes/chemistry , China , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Models, Chemical , Geologic Sediments/chemistry , Models, Theoretical
2.
ACS Appl Mater Interfaces ; 16(37): 49400-49410, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39235080

ABSTRACT

Quinazolinone derivatives are an important class of pharmaceutical and pesticide intermediates, which are generally synthesized starting with the condensation reaction between aldehydes and 2-aminobenzamide to obtain corresponding intermediates and then oxidized to obtain the products. Although some catalysts have been developed currently for the synthesis of quinazolinone derivatives, their catalytic efficiency is relatively low because only the oxidative catalytic sites of the catalyst have been focused on. Herein, we synthesized three new polyoxometalate-based metal-organic frameworks, [CuI4(4,4'-bipy)7(Hn-1PMo12-nVnO40)]·2H2O (n = 1-3), which were formed by coordinating a Cu(I)-bipy complex with different Keggin-type phosphomolybdic acids. An important feature of these compounds is that they possess proton and multioxidative active sites [Cu(I) center and V(V) center]; thus, we applied them to the catalytic synthesis of quinazolinone derivatives. The results indicate that compound 3 has an excellent catalytic activity. Based on density functional theory calculations, it is speculated that protons participate in the aldehyde amine condensation reaction, which changes the reaction pathway and reduces the activation energy from 55.1 to 31.4 kcal/mol, thereby increasing the reaction rate significantly. Interestingly, Raman spectra and electron paramagnetic resonance measurements indicate the presence of CuIIOO• and •O2- during the oxidative dehydrogenation process, which facilitates the rapid consumption of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one intermediates, thereby promoting the chemical reaction to move toward the positive direction. Thanks to the synergistic effect of multicatalytic sites, compound 3 achieved highly efficient catalytic synthesis of quinazolinones with 99% yield in 1 h.

3.
Brain Res Bull ; 217: 111081, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39277019

ABSTRACT

Chronic pain is a universal public health problem with nearly one third of global human involved, which causes significant distressing personal burden. After painful stimulus, neurobiological changes occur not only in peripheral nervous system but also in central nervous system where somatosensory cortex is important for nociception. Being an ion channel, transient receptor potential vanilloid 1 (TRPV1) act as an inflammatory detector in the brain. Thymic stromal lymphopoietin (TSLP) is a potent neuroinflammation mediator after nerve injury. Bleomycin is applied to treat dermatologic diseases, and its administration elicits local painful sensation. However, whether bleomycin administration can cause chronic pain remains unknown. In the present study, we aimed to investigate how mice develop chronic pain after receiving repeated bleomycin administration. In addition, the relevant neurobiological brain changes after noxious stimuli were clarified. C57BL/6 mice aged five- to six-weeks were randomly classified into two group, PBS (normal) group and bleomycin group which bleomycin was intradermally administered to back five times a week over a three-week period. Calibrated forceps testing was used to measure mouse pain threshold. Western blots were used to assess neuroinflammatory response; immunofluorescence assay was used to measure the status of neuron apoptosis, glial reaction, and neuro-glial communication. Bleomycin administration induced mechanical nociception and activated both TRPV1 and TSLP/TSLPR/pSTAT5 signals in mouse somatosensory cortex. Through these pathways, bleomycin not only activates glial reaction but also causes neuronal apoptosis. TRPV1 and TSLP/TSLPR/pSTAT5 signaling had co-labeled each other by immunofluorescence assay. Taken together, our study provides a new chronic pain model by repeated intradermal bleomycin injection by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals.

4.
Toxicol Appl Pharmacol ; 492: 117103, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278550

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is among the most aggressive hematological malignancies and patients are commonly treated with combinatorial immunochemotherapies such as R-CHOP. Till now, the prognoses are still variable and unsatisfactory, depending on the molecular subtype and the treatment response. Developing effective and tolerable new agents is always urgently needed, and compounds from a natural source have gained increasing attentions. Wogonin is an active flavonoid extracted from the traditional Chinese herbal medicine Scutellaria baicalensis Georgi and has shown extensive antitumor potentials. However, the therapeutic effect of wogonin on DLBCL remains unknown. Here, we found that treatment with wogonin dose- and time-dependently reduced the viability in a panel of established DLBCL cell lines. The cytotoxicity of wogonin was mediated through apoptosis induction, along with the loss of mitochondrial membrane potential and the downregulation of BCL-2, MCL-1, and BCL-xL. In terms of the mechanism, wogonin inhibited the PI3K and MAPK pathways, as evidenced by the clear decline in the phosphorylation of AKT, GSK3ß, S6, ERK, and P38. Furthermore, the combination of wogonin and the BCL-2 inhibitor venetoclax elicited synergistically enhanced killing effect on DLBCL cells regardless of their molecular subtypes. Finally, administration of wogonin significantly impeded the progression of the DLBCL tumor in a xenograft animal model without obvious side effects. Taken together, the present study suggests a promising potential of wogonin in the treatment of DLBCL patients either as monotherapy or an adjuvant for venetoclax-based combinations.

5.
Adv Sci (Weinh) ; : e2401838, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39301861

ABSTRACT

Protein surfaces have pivotal roles in interactions between proteins and other biological molecules. However, the structural dynamics of protein surfaces have rarely been explored and are poorly understood. Here, the surface of a single-stranded DNA (ssDNA) binding protein (SSB) with four DNA binding domains that bind ssDNA in binding site sizes of 35, 56, and 65 nucleotides per tetramer is investigated. Using oligonucleotides as probes to sense the charged surface, NaCl induces a two-state structural transition on the SSB surface even at moderate concentrations. Chelation of sodium ions with charged amino acids alters the network of hydrogen bonds and/or salt bridges on the surface. Such changes are associated with changes in the electrostatic potential landscape and interaction mode. These findings advance the understanding of the molecular mechanism underlying the enigmatic salt-induced transitions between different DNA binding site sizes of SSBs. This work demonstrates that monovalent salt is a key regulator of biomolecular interactions that not only play roles in non-specific electrostatic screening effects as usually assumed but also may configure the surface of proteins to contribute to the effective regulation of biomolecular recognition and other downstream events.

6.
World J Gastrointest Surg ; 16(8): 2436-2450, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220062

ABSTRACT

BACKGROUND: Cholecystectomy is a successful treatment option for gallstones, although the incidence of colorectal cancer (CRC) has notably increased in post-cholecystectomy (PC) patients. However, it remains uncertain whether the altered mucosal microbiota in the ascending colon is related. AIM: To investigate the potential correlation between gut microbiota and the surgical procedure of cholecystectomy. METHODS: In total, 30 PC patients and 28 healthy controls underwent colonoscopies to collect mucosal biopsy samples. PC patients were divided based on their clinical features. Then, 16S-rRNA gene sequencing was used to analyze the amplicon, alpha diversity, beta diversity, and composition of the bacterial communities. Additionally, the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) database, sourced from the Kyoto Encyclopedia of Genes and Genomes, was used to predict the functional capabilities of the bacteria. RESULTS: PC patients were comparable with healthy controls. However, PC patients older than 60 years had a distinct composition compared to those under 60 years old. Bacteroidetes richness was considerably higher at the phylum level in PC patients. Bacteroides, Parabacteroides, and Bilophila were more abundant in the PC group than in the control group. Furthermore, PC patients exhibited greater enrichment in metabolic pathways, specifically those related to lipopolysaccharide biosynthesis and vancomycin group antibiotic production, than controls. CONCLUSION: This study indicated that the mucosal microbiota in PC patients was altered, perhaps offering new perspectives on the treatment possibilities for CRC and diarrhea following cholecystectomy.

7.
Front Immunol ; 15: 1391218, 2024.
Article in English | MEDLINE | ID: mdl-39224582

ABSTRACT

Lupus nephritis (LN) is a challenging condition with limited diagnostic and treatment options. In this study, we applied 12 distinct machine learning algorithms along with Non-negative Matrix Factorization (NMF) to analyze single-cell datasets from kidney biopsies, aiming to provide a comprehensive profile of LN. Through this analysis, we identified various immune cell populations and their roles in LN progression and constructed 102 machine learning-based immune-related gene (IRG) predictive models. The most effective models demonstrated high predictive accuracy, evidenced by Area Under the Curve (AUC) values, and were further validated in external cohorts. These models highlight six hub IRGs (CD14, CYBB, IFNGR1, IL1B, MSR1, and PLAUR) as key diagnostic markers for LN, showing remarkable diagnostic performance in both renal and peripheral blood cohorts, thus offering a novel approach for noninvasive LN diagnosis. Further clinical correlation analysis revealed that expressions of IFNGR1, PLAUR, and CYBB were negatively correlated with the glomerular filtration rate (GFR), while CYBB also positively correlated with proteinuria and serum creatinine levels, highlighting their roles in LN pathophysiology. Additionally, protein-protein interaction (PPI) analysis revealed significant networks involving hub IRGs, emphasizing the importance of the interleukin family and chemokines in LN pathogenesis. This study highlights the potential of integrating advanced genomic tools and machine learning algorithms to improve diagnosis and personalize management of complex autoimmune diseases like LN.


Subject(s)
Algorithms , Lupus Nephritis , Machine Learning , Lupus Nephritis/diagnosis , Lupus Nephritis/immunology , Humans , Female , Biomarkers , Male , Adult , Protein Interaction Maps , Computational Biology/methods , Gene Expression Profiling , Single-Cell Analysis/methods
8.
Cytotherapy ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39217529

ABSTRACT

OBJECT: Autologous CD19 chimeric antigen receptor T-cell therapy (CAR-T) significantly modifies the natural course of chemorefractory diffuse large B-cell lymphoma (DLBCL). However, 25% to 50% of patients with relapsed/refractory DLBCL still do not achieve remission. Therefore, investigating new molecular prognostic indicators that affect the effectiveness of CAR-T for DLBCL and developing novel combination therapies are crucial. METHODS: Data from 73 DLBCL patients who received CD19 CAR-T (Axi-cel or Relma-cel) were retrospectively collected from Shanghai Tongji Hospital of Tongji University, The Second Affiliated Hospital Zhejiang University School of Medicine, and The Affiliated People's Hospital of Ningbo University. Prior to CD19 CAR-T-cell transfusions, the patients received fludarabine and cyclophosphamide chemotherapy regimen. RESULTS: Our study revealed that relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL) patients with both Double-expression (MYC > 40% and BCL2 > 50%) and TP53 alterations tend to have a poorer clinical prognosis after CAR-T therapy, even when CAR-T therapy is used in combination with other therapies. However, CAR-T therapy was found to be effective in patients with only TP53 alterations or DE status, suggesting that their prognosis is in line with that of patients without TP53 alterations or DE status. CONCLUSIONS: Our study suggests that r/r DLBCL patients with both DE status and TP53 alterations treated with CAR-T therapy are more likely to have a poorer clinical prognosis. However, CAR-T therapy has the potential to improve the prognosis of patients with only TP53 alterations or DE status to be similar to that of patients without these abnormalities.

9.
Diabetes Obes Metab ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256938

ABSTRACT

IMPORTANCE: Diabetes increases the risk of Parkinson disease (PD). Sodium-glucose cotransporter 2 (SGLT2) inhibitors, a new glucose-lowering therapeutic class, have shown neuroprotective effects in mechanistic studies. However, the association between SGLT2 inhibitors and PD risk in real-world populations with type 2 diabetes (T2D) remains unclear. OBJECTIVE: The aim was to assess the association between SGLT2 inhibitors and the risk of PD in older populations with T2D. DESIGN, SETTING AND PARTICIPANTS: This retrospective cohort analysis used Medicare claims data from 2016 to 2020 to identify fee-for-service beneficiaries ≥65 years diagnosed with T2D and without pre-existing PD. EXPOSURES: The initiation of an SGLT2 inhibitor was compared with that of a dipeptidyl peptidase-4 (DPP4) inhibitor. MAIN OUTCOMES AND MEASURES: The outcome was the first incident PD ever since the date initiating either an SGLT2 inhibitor or a DPP4 inhibitor. We employed a 1:1 propensity score matching to balance the baseline covariates between treatment groups, including sociodemographics, comorbidities and co-medications. We applied Cox regression models to assess the effect of SGLT2 inhibitors versus DPP4 inhibitors on incident PD. RESULTS: Of 89 330 eligible Medicare beneficiaries (mean age: 75 ± 7 years, 52% women), 0.6% (n = 537) had incident PD over the follow-up. After 1:1 propensity matching, the PD incidence was 2.5 and 3.5 events per 1000 person-years in the SGLT2 inhibitor group and DPP4 inhibitor group, respectively. The SGLT2 inhibitor group was associated with a significantly lower risk of incident PD than the DPP4 inhibitor group (hazard ratio: 0.70 [95% confidence interval: 0.55-0.89]). There is a potential trend that the risk reduction in incident PD was profound in non-Hispanic Black individuals and insulin users. CONCLUSION AND RELEVANCE: Compared to DPP4 inhibitors, SGLT2 inhibitors were associated with a significantly lower risk of incident PD in older populations with T2D.

10.
Front Immunol ; 15: 1407118, 2024.
Article in English | MEDLINE | ID: mdl-39267737

ABSTRACT

Background: Islet transplantation is a promising treatment for type 1 diabetes that aims to restore insulin production and improve glucose control, but long-term graft survival remains a challenge due to immune rejection. Methods: ScRNA-seq data from syngeneic and allogeneic islet transplantation grafts were obtained from GSE198865. Seurat was used for filtering and clustering, and UMAP was used for dimension reduction. Differentially expressed genes were analyzed between syngeneic and allogeneic islet transplantation grafts. Gene set variation analysis (GSVA) was performed on the HALLMARK gene sets from MSigDB. Monocle 2 was used to reconstruct differentiation trajectories, and cytokine signature enrichment analysis was used to compare cytokine responses between syngeneic and allogeneic grafts. Results: Three distinct macrophage clusters (Mø-C1, Mø-C2, and Mø-C3) were identified, revealing complex interactions and regulatory mechanisms within macrophage populations. The significant activation of macrophages in allogeneic transplants was marked by the upregulation of allograft rejection-related genes and pathways involved in inflammatory and interferon responses. GSVA revealed eight pathways significantly upregulated in the Mø-C2 cluster. Trajectory analysis revealed that Mø-C3 serves as a common progenitor, branching into Mø-C1 and Mø-C2. Cytokine signature enrichment analysis revealed significant differences in cytokine responses, highlighting the distinct immunological environments created by syngeneic and allogeneic grafts. Conclusion: This study significantly advances the understanding of macrophage roles within the context of islet transplantation by revealing the interactions between immune pathways and cellular fate processes. The findings highlight potential therapeutic targets for enhancing graft survival and function, emphasizing the importance of understanding the immunological aspects of transplant acceptance and longevity.


Subject(s)
Graft Rejection , Islets of Langerhans Transplantation , Macrophages , Single-Cell Analysis , Islets of Langerhans Transplantation/immunology , Islets of Langerhans Transplantation/methods , Macrophages/immunology , Macrophages/metabolism , Animals , Graft Rejection/immunology , Mice , Cytokines/metabolism , Graft Survival/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/surgery , Transplantation, Homologous , Gene Expression Profiling , Macrophage Activation/genetics , Transcriptome
11.
Inorg Chem ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39270127

ABSTRACT

In order to facilitate the practical application of circularly polarized luminescence (CPL) active molecules, the CPL brightness (BCPL) must be optimized. We have applied a binary modular strategy to synthesize two chiral organo-Tb3+ complexes, [Tb(Coum)3(1R,2R-Ph-PyBox)] (2) and [Tb(Coum)3(1S,2S-Ph-PyBox)] (5), combining 3-acetyl-4-hydroxy-coumarin (Coum) and enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine (1R,2R/1S,2S-Ph-PyBox). The photophysical properties of these novel complexes have been fully characterized. The combined point-chiral induction capability of chiral bis(oxazoline) derivatives and the outstanding photophysical properties of the coumarin-derived ligand have resulted in an intense excited-state chiroptical activity (|glum| = 0.097-0.103) for both Tb3+ enantiomers, with a bright Tb3+-centered high-purity green emission (ΦPL = 74%) and enhanced antenna-centered absorption behavior (ε320 nm = 47820-47940 M-1 cm-1). A superior BCPL (1132.7-1205.8 M-1 cm-1 at 5D4 → 7F5) has been established for complexes 2 and 5. The strategy adopted in this work provides a new route to chiroptical organo-Tb3+ luminophores with outstanding comprehensive performance.

12.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273219

ABSTRACT

The economic significance of ruminants in agriculture underscores the need for advanced research methodologies to enhance their traits. This review aims to elucidate the transformative role of pan-omics technologies in ruminant research, focusing on their application in uncovering the genetic mechanisms underlying complex traits such as growth, reproduction, production performance, and rumen function. Pan-omics analysis not only helps in identifying key genes and their regulatory networks associated with important economic traits but also reveals the impact of environmental factors on trait expression. By integrating genomics, epigenomics, transcriptomics, metabolomics, and microbiomics, pan-omics enables a comprehensive analysis of the interplay between genetics and environmental factors, offering a holistic understanding of trait expression. We explore specific examples of economic traits where these technologies have been pivotal, highlighting key genes and regulatory networks identified through pan-omics approaches. Additionally, we trace the historical evolution of each omics field, detailing their progression from foundational discoveries to high-throughput platforms. This review provides a critical synthesis of recent advancements, offering new insights and practical recommendations for the application of pan-omics in the ruminant industry. The broader implications for modern animal husbandry are discussed, emphasizing the potential for these technologies to drive sustainable improvements in ruminant production systems.


Subject(s)
Genomics , Metabolomics , Ruminants , Animals , Ruminants/genetics , Genomics/methods , Metabolomics/methods , Epigenomics/methods , Animal Husbandry/methods , Animal Husbandry/economics , Multiomics
13.
Clin Nutr ; 43(10): 2327-2335, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39232261

ABSTRACT

BACKGROUND & AIMS: Malnutrition is prevalent among hospitalised patients, and increases the morbidity, mortality, and medical costs; yet nutritional assessments on admission are not routine. This study assessed the clinical and economic benefits of using an artificial intelligence (AI)-based rapid nutritional diagnostic system for routine nutritional screening of hospitalised patients. METHODS: A nationwide multicentre randomised controlled trial was conducted at 11 centres in 10 provinces. Hospitalised patients were randomised to either receive an assessment using an AI-based rapid nutritional diagnostic system as part of routine care (experimental group), or not (control group). The overall medical resource costs were calculated for each participant and a decision-tree was generated based on an intention-to-treat analysis to analyse the cost-effectiveness of various treatment modalities. Subgroup analyses were performed according to clinical characteristics and a probabilistic sensitivity analysis was performed to evaluate the influence of parameter variations on the incremental cost-effectiveness ratio (ICER). RESULTS: In total, 5763 patients participated in the study, 2830 in the experimental arm and 2933 in the control arm. The experimental arm had a significantly higher cure rate than the control arm (23.24% versus 20.18%; p = 0.005). The experimental arm incurred an incremental cost of 276.52 CNY, leading to an additional 3.06 cures, yielding an ICER of 90.37 CNY. Sensitivity analysis revealed that the decision-tree model was relatively stable. CONCLUSION: The integration of the AI-based rapid nutritional diagnostic system into routine inpatient care substantially enhanced the cure rate among hospitalised patients and was cost-effective. REGISTRATION: NCT04776070 (https://clinicaltrials.gov/study/NCT04776070).

14.
BMC Genomics ; 25(1): 845, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251902

ABSTRACT

BACKGROUND: Lanping black-boned sheep (LPB) represent a distinctive mammalian species characterized by hyperpigmentation, resulting in black bone and muscle features, in contrast to their conventional counterparts exhibiting red muscle and white bone. The genetic basis underlying LPB hyperpigmentation has remained enigmatic. METHODS: In this study, we conducted whole-genome sequencing of 100 LPB and 50 Lanping normal sheep (LPN), and integrated this data with 421 sequenced datasets from wild and domestic sheep, shedding light on the genetic backdrop and genomic variations associated with LPB. Furthermore, we performed comparative RNA-Seq analysis using liver sample to pinpoint genes implicated in the pigmentation process. We generated a comprehensive dataset comprising 97,944,357 SNPs from 571 sheep, facilitating an in-depth exploration of genetic factors. RESULTS: Population genetic structure analysis revealed that the LPB breed traces its origin back to LPN, having evolved into a distinct breed. The integration of positively selected genes with differentially expressed genes identified two candidates, ERBB4 and ROR1, potentially linked to LPB hyperpigmentation. Comparative analysis of ERBB4 and ROR1 mRNA relative expression levels in liver, spleen, and kidney tissues of LPB, in comparison to Diqing sheep, revealed significant upregulation, except for ERBB4 in the liver. Gene expression heatmaps further underscored marked allelic frequency disparities in different populations. CONCLUSION: Our findings establish the evolutionary lineage of the LPB breed from LPN and underscore the involvement of ERBB4 and ROR1 genes in melanin synthesis. These results enhance our comprehension of the molecular basis of hyperpigmentation and contribute to a more comprehensive depiction of sheep diversity.


Subject(s)
Hyperpigmentation , Polymorphism, Single Nucleotide , Animals , Hyperpigmentation/genetics , Hyperpigmentation/veterinary , Sheep/genetics , Transcriptome , Genomics , Gene Expression Profiling , Sheep, Domestic/genetics , Whole Genome Sequencing
15.
Bioresour Technol ; 410: 131278, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151572

ABSTRACT

The efficient utilization of residual sludge and the rapid cultivation of aerobic granular sludge in continuous-flow engineering applications present significant challenges. In this study, aerobic granular cultivation was fostered in a continuous-flow system using Ca(ClO)2-sludge carbon (Ca-SC). Ca-SC retained the original sludge properties, contributing to granular growth in an A/O bioreactor. By day 40, the granule diameters increased to 0.8 mm with the SVI30 decreased by 2.7 times. Moreover, Ca-SC facilitated protein secretion, reaching 98.06 mg/g VSS and enhanced the hydrophobicity to 68.4 %. The continuous-flow aerobic granular sludge exhibited a nutrient removal rate above 90 %. Furthermore, Tessaracoccus and Nitrospira were enriched to promote granular formation and nitrogen removal. The residual sludge was carbonized and reused in the traditional wastewater treatment process to culture granular sludge in situ, aiming to achieve "self-production and self-consumption" of sludge and promote the innovative model of "treating waste with waste" in urban sewage environmental restoration.


Subject(s)
Bioreactors , Sewage , Sewage/microbiology , Aerobiosis , Nitrogen , Waste Disposal, Fluid/methods , Water Purification/methods , Calcium Chloride/pharmacology
16.
ACS Nano ; 18(35): 24236-24251, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39173188

ABSTRACT

CRISPR/Cas-based molecular diagnosis demonstrates potent potential for sensitive and rapid pathogen detection, notably in SARS-CoV-2 diagnosis and mutation tracking. Yet, a major hurdle hindering widespread practical use is its restricted throughput, limited integration, and complex reagent preparation. Here, a system, microfluidic multiplate-based ultrahigh throughput analysis of SARS-CoV-2 variants of concern using CRISPR/Cas12a and nonextraction RT-LAMP (mutaSCAN), is proposed for rapid detection of SARS-CoV-2 and its variants with limited resource requirements. With the aid of the self-developed reagents and deep-learning enabled prototype device, our mutaSCAN system can detect SARS-CoV-2 in mock swab samples below 30 min as low as 250 copies/mL with the throughput up to 96 per round. Clinical specimens were tested with this system, the accuracy for routine and mutation testing (22 wildtype samples, 26 mutational samples) was 98% and 100%, respectively. No false-positive results were found for negative (n = 24) samples.


Subject(s)
COVID-19 , CRISPR-Cas Systems , Deep Learning , SARS-CoV-2 , CRISPR-Cas Systems/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Humans , COVID-19/diagnosis , COVID-19/virology , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Lab-On-A-Chip Devices , Mutation , Microfluidic Analytical Techniques/instrumentation
17.
Phys Chem Chem Phys ; 26(35): 22982-22989, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39171568

ABSTRACT

The excitonic effect significantly influences the optoelectronic characteristics of halide perovskites. However, consensus on the temperature modulated exciton binding energy remains elusive, even for extensively studied materials like MAPbBr3 perovskites. In this study, we utilized UV-vis absorption spectra and the Elliott model to extract the exciton binding energies of MAPbBr3 in the range of 170-290 K. Elliott model fitted results reveal a linear increasing trend in bandgap and exciton binding energy for both cubic and tetragonal phases with temperature, with the tetragonal phase exhibiting a higher increasing rate. Additionally, we found that regardless of the temperature, the strongest absorption peaks are always dominated by the exciton absorption, and our fitted exciton absorption peak blue-shifts with the increase of temperature, accounting for the observed blue-shift of the strongest absorption peak for our fabricated MAPbBr3 sample. However, with the increase of temperature, the weight of continuum state absorption increases significantly, which widens the absorption tails to the longer wavelength, leading to the red-shift of Tauc-plotted optical bandgaps. This is the first work considering the temperature-modulated excitonic properties of halide perovskites, which offers valuable insights into the behavior of MAPbBr3 under varying temperature conditions. After a series of theoretical simulations on the temperature modulated electronic properties, including band structures, carrier effective masses, optical dielectric properties and Born effective charges, we provide rational interpretations for the experimentally observed temperature induced variation of the optical properties. These works are helpful to deepen our understanding of the temperature modulated optical properties of MAPbBr3 perovskites.

18.
J Alzheimers Dis ; 101(2): 525-539, 2024.
Article in English | MEDLINE | ID: mdl-39213075

ABSTRACT

Background: Reduction of the production of amyloid-ß (Aß) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aß species, another potential beneficial approach, has been far less explored. Objective: To investigate the potential of multi-copper oxidases (MCOs) in degrading Aß peptides and their potential benefits for AD treatment. Methods: We investigated the degradation efficiency of MCOs by using electrophoresis and validated the ceruloplasmin (CP)-Aß interaction using total internal reflection fluorescence microscopy, fluorescence photometer, and fluorescence polarization measurement. We also investigated the therapeutic effect of ascorbate oxidase (AO) by using induced pluripotent stem (iPS) neuron cells and electrophysiological analysis with brain slices. Results: We discovered that CP, an important MCO in human blood, could degrade Aß peptides. We also found that other MCOs could induce Aß degradation as well. Remarkably, we revealed that AO had the strongest degrading effect among the tested MCOs. Using iPS neuron cells, we observed that AO could rescue neuron toxicity which induced by Aß oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Aß-induced deficit in synaptic transmission in the hippocampus. Conclusions: To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.


Subject(s)
Amyloid beta-Peptides , Induced Pluripotent Stem Cells , Neurons , Oxidoreductases , Amyloid beta-Peptides/metabolism , Animals , Humans , Oxidoreductases/metabolism , Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Mice
19.
Int J Cardiol ; 416: 132486, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39187069

ABSTRACT

BACKGROUND: Atrial fibrosis is associated with the pathogenesis of atrial fibrillation (AF). This study aims to discuss the function of circ_0079480 in atrial fibrosis and its underlying mechanism. METHODS: In vitro and in vivo models of atrial fibrosis were established by using angiotensin II (Ang II) to treat human atrial fibroblasts (HAFs) and C57/B6J mice. qRT-PCR and western blot were used to examine the mRNA and protein expression levels. CCK-8, EdU, cell strach, and transwell assays were performed to determine the proliferation and migration of HAFs. Dual-luciferase reporter and RIP/RNA pull-down assays were explored to identify the interaction of miR-338-3p and circ_0079480/THBS1. HE and Masson's trichrome staining experiments were performed to analyze the histopathological change in mice atrial tissues. RESULTS: Circ_0079480 expression was increased in AF patients' atrial tissues and Ang II-treated HAFs. Silencing circ_0079480 inhibited cell proliferation and migration and reduced fibrosis-associated gene expression in Ang II-treated HAFs. Circ_0079480 could target miR-338-3p to repress its expression. MiR-338-3p inhibitor blocked the inhibitory effects of circ_0079480 knockdown on HAFs proliferation, migration, and fibrosis. Thrombospondin-1 (THBS1) was confirmed as a downstream target of miR-338-3p, and circ_0079480 could sponge miR-338-3p to upregulate THBS1 expression. Moreover, silencing THBS1 suppressed Ang II-induced proliferation, migration, and fibrosis in HAFs. More importantly, depletion of circ_0079480 inactivated the THBS1/TGF-ß1/Smad3 signaling by upregulating miR-338-3p. Mice experiments also confirmed the suppression of circ_0079480 knockdown on atrial fibrosis. CONCLUSION: Circ_0079480 acts as a sponge of miR-338-3p to upregulate THBS1 expression and activate the TGF-ß1/Smad3 signaling, finally promoting Ang II-induced atrial fibrosis.


Subject(s)
Atrial Fibrillation , Cell Movement , Cell Proliferation , Fibroblasts , Fibrosis , Heart Atria , Mice, Inbred C57BL , MicroRNAs , RNA, Circular , Signal Transduction , Smad3 Protein , Thrombospondin 1 , Transforming Growth Factor beta1 , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Smad3 Protein/metabolism , Smad3 Protein/genetics , Mice , Cell Proliferation/physiology , Humans , Transforming Growth Factor beta1/metabolism , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Thrombospondin 1/biosynthesis , Cell Movement/physiology , RNA, Circular/genetics , RNA, Circular/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Heart Atria/pathology , Heart Atria/metabolism , Signal Transduction/physiology , Male , Cells, Cultured
20.
Langmuir ; 40(37): 19506-19516, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39205649

ABSTRACT

The efficacy and structural evolution of Mo-doped titania nanoparticles (MTNPs) as advanced photocatalysts for degrading methyl blue (MB) are investigated by X-ray absorption spectroscopy (XAS). The 3 wt % MTNP, characterized by uniform size and anatase structure, exhibits higher efficiency. The spectral analyses unveiled structural variations in the TiO6 octahedral structure and revealed an active site of the distorted square pyramidal structure symmetry (C4v). The in situ XAS spectra illustrate that MTNPs, particularly at 3 wt % doping, effectively enhanced the hole carriers in Ti 3d orbitals with a charge transfer to Mo 4d orbitals and impeded electron-hole pair merging, significantly enhancing the photodegradation under light illumination. This study deepens our understanding of the crucial role of Mo doping in optimizing TiO2 nanoparticle performance for efficient environmental remediation, showcasing the potential of MTNPs as sustainable photocatalytic materials.

SELECTION OF CITATIONS
SEARCH DETAIL