Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891058

ABSTRACT

Bladder cancer is a heterogenous disease, and molecular subtyping is a promising method to capture this variability. Currently, the immune compartment in relation to subtypes is poorly characterized. Here, we analyzed the immune compartment in bladder tumors and normal bladder urothelium with a focus on T cell subpopulations using flow cytometry and RNA sequencing. The results were investigated in relation to tumor invasiveness (NMIBC/MIBC) and molecular subtypes according to the Lund Taxonomy system. Whereas the NMIBC/MIBC differed in the overall immune infiltration only, the molecular subtypes differed both in terms of immune infiltration and immune compartment compositions. The Basal/Squamous (Ba/Sq) and genomically unstable (GU) tumors displayed increased immune infiltration compared to urothelial-like (Uro) tumors. Additionally, the GU tumors had a higher proportion of regulatory T cells within the immune compartment compared to Uro tumors. Furthermore, sequencing showed higher levels of exhaustion in CD8+ T cells from GU tumors compared to both Uro tumors and the control. Although no such difference was detected at the transcriptomic level in Uro tumors compared to the controls, CD8+ T cells in Uro tumors showed higher expression of several exhaustion markers at the protein level. Taken together, our findings indicate that depending on the molecular subtype, different immunotherapeutic interventions might be warranted.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Male , Female , Aged , Middle Aged , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Urothelium/pathology , Urothelium/metabolism , Urothelium/immunology
2.
Nucleic Acids Res ; 52(5): 2648-2671, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38180812

ABSTRACT

Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.


Subject(s)
Methyltransferases , Neuroblastoma , RNA, Long Noncoding , Humans , Adenine/analogs & derivatives , Methyltransferases/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , R-Loop Structures , RNA, Long Noncoding/metabolism , Telomere/genetics , Telomere Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL