Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Sci Adv ; 10(23): eadj0787, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848368

ABSTRACT

Somatic mutations in T cells can cause cancer but also have implications for immunological diseases and cell therapies. The mutation spectrum in nonmalignant T cells is unclear. Here, we examined somatic mutations in CD4+ and CD8+ T cells from 90 patients with hematological and immunological disorders and used T cell receptor (TCR) and single-cell sequencing to link mutations with T cell expansions and phenotypes. CD8+ cells had a higher mutation burden than CD4+ cells. Notably, the biggest variant allele frequency (VAF) of non-synonymous variants was higher than synonymous variants in CD8+ T cells, indicating non-random occurrence. The non-synonymous VAF in CD8+ T cells strongly correlated with the TCR frequency, but not age. We identified mutations in pathways essential for T cell function and often affected lymphoid neoplasia. Single-cell sequencing revealed cytotoxic TEMRA phenotypes of mutated T cells. Our findings suggest that somatic mutations contribute to CD8+ T cell expansions without malignant transformation.


Subject(s)
CD8-Positive T-Lymphocytes , Mutation , Receptors, Antigen, T-Cell , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Adult , Single-Cell Analysis , Male , Female , Middle Aged , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Gene Frequency , Phenotype , Aged
2.
PLoS One ; 17(11): e0278245, 2022.
Article in English | MEDLINE | ID: mdl-36441748

ABSTRACT

Somatic mutations have a central role in cancer, but there are also a few rare autoimmune diseases in which somatic mutations play a major role. We have recently shown that nonsynonymous somatic mutations with low allele fractions are preferentially detectable in CD8+ cells and that the STAT3 gene is a promising target for screening. Here, we analyzed somatic mutations in the STAT3 SH2 domain in peripheral blood CD8+ cells in a set of 94 multiple sclerosis (MS) patients and 99 matched controls. PCR amplicons targeting the exons 20 and 21 of STAT3 were prepared and sequenced using the Illumina MiSeq instrument with 2x300bp reads. We designed a novel variant calling method, optimized for large number of samples, high sequencing depth (>25,000x) and small target genomic area. Overall, we discovered 64 STAT3 somatic mutations in the 193 donors, of which 63 were non-synonymous and 77% have been previously reported in cancer or lymphoproliferative disease. The overall median variant allele fraction was 0.065% (range 0.007-1.2%), without significant difference between MS and controls (p = 0.82). There were 26 (28%) MS patients vs. 24 (24%) controls with mutations (p = 0.62). Two or more mutations were found in 9 MS patients vs. 2 controls (p = 0.03, pcorr = 0.12). Carriership of mutations associated with older age and lower neutrophil counts. These results demonstrate that STAT3 SH2 domain is a hotspot for somatic mutations in CD8+ cells with a prevalence of 26% among the participants. There were no significant differences in the mutation prevalences between MS patients and controls. Further research is needed to elucidate the role of antigenic stimuli in the expansion of the mutant clones. Furthermore, the high discovered prevalence of STAT3 somatic mutations makes it feasible to analyze these mutations directly in tissue-infiltrating CD8+ cells in autoimmune diseases.


Subject(s)
Autoimmune Diseases , Multiple Sclerosis , Humans , Alleles , Prevalence , Multiple Sclerosis/genetics , Mutation , CD8-Positive T-Lymphocytes , STAT3 Transcription Factor/genetics
3.
Semin Hematol ; 59(3): 167-173, 2022 07.
Article in English | MEDLINE | ID: mdl-36115694

ABSTRACT

Inherited bone marrow failure syndromes (IBMFS) are a heterogeneous group of genetic disorders characterized by insufficient blood cell production and increased risk of transformation to myeloid malignancies. While genetically diverse, IBMFS are collectively defined by a cell-intrinsic hematopoietic stem cell (HSC) fitness defect that impairs HSC self-renewal and hematopoietic differentiation. In IBMFS, HSCs frequently acquire mutations that improve cell fitness, a phenomenon known as somatic compensation. Somatic compensation can occur via distinct genetic processes such as loss of the germline mutation or somatic alterations in pathways affected by the disease-causing gene. While the clinical implications of somatic compensation in IBMFS remain to be fully discovered, understanding these mutational processes can help understand disease pathophysiology and may inform future diagnostic and therapeutic approaches. In this review, we highlight current understanding about somatic compensation in IBMFS.


Subject(s)
Anemia, Aplastic , Bone Marrow Diseases , Hemoglobinuria, Paroxysmal , Anemia, Aplastic/genetics , Bone Marrow Diseases/genetics , Bone Marrow Failure Disorders , Congenital Bone Marrow Failure Syndromes , Hemoglobinuria, Paroxysmal/genetics , Hemoglobinuria, Paroxysmal/pathology , Humans
4.
Leukemia ; 36(9): 2317-2327, 2022 09.
Article in English | MEDLINE | ID: mdl-35927326

ABSTRACT

In immune aplastic anemia (IAA), severe pancytopenia results from the immune-mediated destruction of hematopoietic stem cells. Several autoantibodies have been reported, but no clinically applicable autoantibody tests are available for IAA. We screened autoantibodies using a microarray containing >9000 proteins and validated the findings in a large international cohort of IAA patients (n = 405) and controls (n = 815). We identified a novel autoantibody that binds to the C-terminal end of cyclooxygenase 2 (COX-2, aCOX-2 Ab). In total, 37% of all adult IAA patients tested positive for aCOX-2 Ab, while only 1.7% of the controls were aCOX-2 Ab positive. Sporadic non-IAA aCOX-2 Ab positive cases were observed among patients with related bone marrow failure diseases, multiple sclerosis, and type I diabetes, whereas no aCOX-2 Ab seropositivity was detected in the healthy controls, in patients with non-autoinflammatory diseases or rheumatoid arthritis. In IAA, anti-COX-2 Ab positivity correlated with age and the HLA-DRB1*15:01 genotype. 83% of the >40 years old IAA patients with HLA-DRB1*15:01 were anti-COX-2 Ab positive, indicating an excellent sensitivity in this group. aCOX-2 Ab positive IAA patients also presented lower platelet counts. Our results suggest that aCOX-2 Ab defines a distinct subgroup of IAA and may serve as a valuable disease biomarker.


Subject(s)
Anemia, Aplastic , Pancytopenia , Adult , Autoantibodies , Biomarkers , Cyclooxygenase 2 , HLA-DRB1 Chains , Humans
5.
Blood ; 138(26): 2781-2798, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34748628

ABSTRACT

Idiopathic aplastic anemia (IAA) is a rare autoimmune bone marrow failure (BMF) disorder initiated by a human leukocyte antigen (HLA)-restricted T-cell response to unknown antigens. As in other autoimmune disorders, the predilection for certain HLA profiles seems to represent an etiologic factor; however, the structure-function patterns involved in the self-presentation in this disease remain unclear. Herein, we analyzed the molecular landscape of HLA complexes of a cohort of 300 IAA patients and almost 3000 healthy and disease controls by deeply dissecting their genotypic configurations, functional divergence, self-antigen binding capabilities, and T-cell receptor (TCR) repertoire specificities. Specifically, analysis of the evolutionary divergence of HLA genotypes (HED) showed that IAA patients carried class II HLA molecules whose antigen-binding sites were characterized by a high level of structural homology, only partially explained by specific risk allele profiles. This pattern implies reduced HLA binding capabilities, confirmed by binding analysis of hematopoietic stem cell (HSC)-derived self-peptides. IAA phenotype was associated with the enrichment in a few amino acids at specific positions within the peptide-binding groove of DRB1 molecules, affecting the interface HLA-antigen-TCR ß and potentially constituting the basis of T-cell dysfunction and autoreactivity. When analyzing associations with clinical outcomes, low HED was associated with risk of malignant progression and worse survival, underlying reduced tumor surveillance in clearing potential neoantigens derived from mechanisms of clonal hematopoiesis. Our data shed light on the immunogenetic risk associated with IAA etiology and clonal evolution and on general pathophysiological mechanisms potentially involved in other autoimmune disorders.


Subject(s)
Anemia, Aplastic/genetics , Genes, MHC Class II , HLA-D Antigens/genetics , Adult , Alleles , Cohort Studies , Female , Genotype , Humans , Male , Middle Aged
6.
Leukemia ; 35(5): 1365-1379, 2021 05.
Article in English | MEDLINE | ID: mdl-33785863

ABSTRACT

The prevalence and functional impact of somatic mutations in nonleukemic T cells is not well characterized, although clonal T-cell expansions are common. In immune-mediated aplastic anemia (AA), cytotoxic T-cell expansions are shown to participate in disease pathogenesis. We investigated the mutation profiles of T cells in AA by a custom panel of 2533 genes. We sequenced CD4+ and CD8+ T cells of 24 AA patients and compared the results to 20 healthy controls and whole-exome sequencing of 37 patients with AA. Somatic variants were common both in patients and healthy controls but enriched to AA patients' CD8+ T cells, which accumulated most mutations on JAK-STAT and MAPK pathways. Mutation burden was associated with CD8+ T-cell clonality, assessed by T-cell receptor beta sequencing. To understand the effect of mutations, we performed single-cell sequencing of AA patients carrying STAT3 or other mutations in CD8+ T cells. STAT3 mutated clone was cytotoxic, clearly distinguishable from other CD8+ T cells, and attenuated by successful immunosuppressive treatment. Our results suggest that somatic mutations in T cells are common, associate with clonality, and can alter T-cell phenotype, warranting further investigation of their role in the pathogenesis of AA.


Subject(s)
Anemia, Aplastic/genetics , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Mutation/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Middle Aged , Young Adult
8.
Haematologica ; 105(12): 2757-2768, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33256375

ABSTRACT

Common variable immunodeficiency and other late-onset immunodeficiencies often co-manifest with autoimmunity and lymphoproliferation. The pathogenesis of most cases is elusive, as only a minor subset harbors known monogenic germline causes. The involvement of both B and T cells is however implicated. To study whether somatic mutations in CD4+ and CD8+ T cells associate with immunodeficiency, we recruited 17 patients and 21 healthy controls. Eight patients had late-onset common variable immunodeficiency and nine patients other immunodeficiency and/or severe autoimmunity. In total, autoimmunity occurred in 94% and lymphoproliferation in 65%. We performed deep sequencing of 2533 immune-associated genes from CD4+ and CD8+ cells. Deep T-cell receptor beta sequencing was used to characterize CD4+ and CD8+ T-cell receptor repertoires. The prevalence of somatic mutations was 65% in all immunodeficiency patients, 75% in common variable immunodeficiency and 48% in controls. Clonal hematopoiesis-associated variants in both CD4+ and CD8+ cells occurred in 24% of immunodeficiency patients. Results demonstrated mutations in known tumor suppressors, oncogenes, and genes that are critical for immune- and proliferative functions, such as STAT5B (two patients), C5AR1 (two patients), KRAS (one patient), and NOD2 (one patient). Additionally, as a marker of T-cell receptor repertoire perturbation, common variable immunodeficiency patients harbored increased frequencies of clones with identical complementarity determining region 3 sequences despite unique nucleotide sequences when compared to controls. In conclusion, somatic mutations in genes implicated for autoimmunity and lymphoproliferation are common in CD4+ and CD8+ cells of patients with immunodeficiency. They may contribute to immune dysregulation in a subset of immunodeficiency patients.


Subject(s)
Immunologic Deficiency Syndromes , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Complementarity Determining Regions/genetics , Humans , Mutation , Receptors, Antigen, T-Cell, alpha-beta/genetics
9.
Nat Commun ; 11(1): 2246, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32382059

ABSTRACT

Graft versus host disease (GvHD) is the main complication of allogeneic hematopoietic stem cell transplantation (HSCT). Here we report studies of a patient with chronic GvHD (cGvHD) carrying persistent CD4+ T cell clonal expansion harboring somatic mTOR, NFKB2, and TLR2 mutations. In the screening cohort (n = 134), we detect the mTOR P2229R kinase domain mutation in two additional cGvHD patients, but not in healthy or HSCT patients without cGvHD. Functional analyses of the mTOR mutation indicate a gain-of-function alteration and activation of both mTORC1 and mTORC2 signaling pathways, leading to increased cell proliferation and decreased apoptosis. Single-cell RNA sequencing and real-time impedance measurements support increased cytotoxicity of mutated CD4+ T cells. High throughput drug-sensitivity testing suggests that mutations induce resistance to mTOR inhibitors, but increase sensitivity for HSP90 inhibitors. Our findings imply that somatic mutations may contribute to aberrant T cell proliferations and persistent immune activation in cGvHD, thereby paving the way for targeted therapies.


Subject(s)
Graft vs Host Disease/genetics , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/genetics , Blotting, Western , Cell Proliferation/genetics , Cell Proliferation/physiology , HEK293 Cells , Humans , Immunity, Cellular/genetics , Immunity, Cellular/physiology , Immunoprecipitation , Mutation/genetics , Protein Binding/genetics , Protein Binding/physiology
11.
Cancer Res ; 77(15): 4078-4088, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28611049

ABSTRACT

Approximately 15% of colorectal cancers exhibit microsatellite instability (MSI), which leads to accumulation of large numbers of small insertions and deletions (indels). Genes that provide growth advantage to cells via loss-of-function mutations in microsatellites are called MSI target genes. Several criteria to define these genes have been suggested, one of them being simple mutation frequency. Microsatellite mutation rate, however, depends on the length and nucleotide context of the microsatellite. Therefore, assessing the general impact of mismatch repair deficiency on the likelihood of mutation events is paramount when following this approach. To identify MSI target genes, we developed a statistical model for the somatic background indel mutation rate of microsatellites to assess mutation significance. Exome sequencing data of 24 MSI colorectal cancers revealed indels at 54 million mononucleotide microsatellites of three or more nucleotides in length. The top 105 microsatellites from 71 genes were further analyzed in 93 additional MSI colorectal cancers. Mutation significance and estimated clonality of mutations determined the most likely MSI target genes to be the aminoadipate-semialdehyde dehydrogenase AASDH and the solute transporter SLC9A8 Our findings offer a systematic profiling of the somatic background mutation rate in protein-coding mononucleotide microsatellites, allowing a full cataloging of the true targets of MSI in colorectal cancer. Cancer Res; 77(15); 4078-88. ©2017 AACR.


Subject(s)
Colorectal Neoplasms/genetics , DNA Mutational Analysis/methods , Microsatellite Instability , Models, Statistical , Humans , Mutation
12.
Parkinsons Dis ; 2011: 658956, 2011.
Article in English | MEDLINE | ID: mdl-22028987

ABSTRACT

Deep brain stimulation of the subthalamic nucleus (STN-DBS) in patients with Parkinson's disease (PD) affects speech inconsistently. Recently, stimulation of the caudal zona incerta (cZi-DBS) has shown superior motor outcomes for PD patients, but effects on speech have not been systematically investigated. The aim of this study was to compare the effects of cZi-DBS and STN-DBS on voice intensity in PD patients. Mean intensity during reading and intensity decay during rapid syllable repetition were measured for STN-DBS and cZi-DBS patients (eight patients per group), before- and 12 months after-surgery on- and off-stimulation. For mean intensity, there were small significant differences on- versus off-stimulation in each group: 74.2 (2.0) dB contra 72.1 (2.2) dB (P = .002) for STN-DBS, and 71.6 (4.1) dB contra 72.8 (3.4) dB (P = .03) for cZi-DBS, with significant interaction (P < .001). Intensity decay showed no significant changes. The subtle differences found for mean intensity suggest that STN-DBS and cZi-DBS may influence voice intensity differently.

SELECTION OF CITATIONS
SEARCH DETAIL
...