Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.684
Filter
1.
Ecotoxicol Environ Saf ; 281: 116661, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954907

ABSTRACT

OBJECTIVE: Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS: Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS: In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS: Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.

2.
Angew Chem Int Ed Engl ; : e202410514, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966937

ABSTRACT

Organic scintillators are praised for their abundant element reserves, facile preparation procedures, and rich structures. Herein, a new family of highly efficient organic phosphonium halide salts with thermally activated delayed fluorescence (TADF) are designed by innovatively adopting quaternary phosphonium as the electron acceptor, while dimethylamine group and halide anions (I-) serve as the electron donor. The prepared butyl(2-[2-(dimethylamino)phenyl]phenyl)diphenylphosphonium iodide (C4-I) exhibits bright blue emission and an ultra-high photoluminescence quantum yield (PLQY) of 100%. Efficient charge transfer is realized through the unique n-π and anion-π stacking in solid-state C4-I. Photophysical studies of C4-I suggest that the incorporation of I accounts for high intersystem crossing rate (kISC) and reverse intersystem crossing rate (kRISC), suppressing the intrinsic prompt fluorescence and enabling near-pure TADF emission at room temperature. Benefitting from the large Stokes shift, high PLQY, efficient exciton utilization, and remarkable X-ray attenuation ability endowed by I, C4-I delivers an outstanding light yield of 80721 photons/MeV and a low limit of detection (LoD) of 22.79 nGy·s-1. This work would provide a rational design concept and open up an appealing road for developing efficient organic scintillators with tunable emission, strong X-ray attenuation ability, and excellent scintillator performance.

3.
Medicine (Baltimore) ; 103(26): e38583, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941365

ABSTRACT

The aspartate to alanine transaminase (AST/ALT) ratio indicates oxidative stress and inflammatory reactions related to the occurrence of diabetic retinopathy (DR). Currently, there are no reports on the correlation between AST/ALT ratio and DR. Hence, this study aimed to explore the relationship between AST/ALT ratio and DR. This cross-sectional study utilized data from the Metabolic Management Center of the First People's Hospital in City. In total, 1365 patients with type 2 diabetes mellitus (T2DM) participated in the study, including 244 patients with DR and 1121 patients without DR. We collected the results of fundus photography, liver function, and other research data and grouped them according to tertiles of AST/ALT ratios. DR prevalence was the highest in the group with the highest AST/ALT ratio (22.12%, P = .004). Both univariate (OR = 2.25, 95% CI: 1.51-3.34, P < .001) and multivariable logistic regression analyses (adjusted for confounding factors) showed that the risk of DR increased by 36% when the AST/ALT ratio increased by 1 standard deviation (SD) (OR = 1.36, 95% CI: 1.16-1.59, P < .001), and 29.3% was mediated by the duration of diabetes. A sensitivity analysis confirmed the stability of the results. This study showed that an increase in AST/ALT ratio is an independent risk factor for DR.


Subject(s)
Alanine Transaminase , Aspartate Aminotransferases , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Humans , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/blood , Diabetic Retinopathy/etiology , Cross-Sectional Studies , Male , Female , Middle Aged , Risk Factors , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Aged , Prevalence , Biomarkers/blood
4.
Sci Rep ; 14(1): 14943, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942818

ABSTRACT

Gravitational wave telescope place extremely high demands on structural thermal deformation, making material selection a critical issue. Carbon fiber reinforced polymer (CFRP) is an ideal choice for the support structure of telescope due to its low coefficient of thermal expansion (CTE) and designable properties. However, current research on the optimization of the CTE of CFRP is scarce, and conventional methods struggle to find layups that meet the requirements. In this paper, an unconventional layup optimization method is proposed to solve this problem. Initially defining the characteristics of the telescope structure and using different layup material for the main and side support rods to minimize thermal deformation. Subsequently, the NSGA-II algorithm is used to optimize the layups which are divided into conventional and unconventional layups. Specimens are then produced from these results and tested to assess the impact of processing errors on practical applications. The results demonstrate that the optimized CFRP meet the CTE requirements and, when applied to the structure, significantly reduces the thermal deformation in the eccentric direction compared to conventional designs. Additionally, a numerical analysis evaluates the effect of ply orientation errors on the performance of unconventional layups, discussing the method's limitations within these contexts.

5.
Angew Chem Int Ed Engl ; : e202407118, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849318

ABSTRACT

Cross-electrophile coupling (XEC) between aryl halides and alkyl halides is a streamlined approach for C(sp2)-C(sp3) bond construction, which is highly valuable in medicinal chemistry. Based on a key NiII aryl amido intermediate, we developed a highly selective and scalable Ni-catalyzed electrochemical XEC reaction between (hetero)aryl halides and primary and secondary alkyl halides. Experimental and computational mechanistic studies indicate that an amine secondary ligand slows down the oxidative addition process of the Ni-polypyridine catalyst to the aryl bromide and a NiII aryl amido intermediate is formed in-situ during the reaction process. The relatively slow oxidative addition is beneficial for enhancing the selectivity of the XEC reaction. The NiII aryl amido intermediate stabilizes the NiII-aryl species to prevent the aryl-aryl homo-coupling side reactions and acts as a catalyst to activate the alkyl bromide substrates. This electrosynthesis system provides a facile, practical, and scalable platform for the formation of (hetero)aryl-alkyl bonds using standard Ni catalysts under mild conditions. The mechanistic insights from this work could serve as a great foundation for future studies on Ni-catalyzed cross-couplings.

6.
Arch Toxicol ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879852

ABSTRACT

Valproic acid (VPA) is a primary medication for epilepsy, yet its hepatotoxicity consistently raises concerns among individuals. This study aims to establish an automated machine learning (autoML) model for forecasting the risk of abnormal increase of transaminase levels while undergoing VPA therapy for 1995 epilepsy patients. The study employed the two-tailed T test, Chi-square test, and binary logistic regression analysis, selecting six clinical parameters, including age, stature, leukocyte count, Total Bilirubin, oral dosage of VPA, and VPA concentration. These variables were used to build a risk prediction model using "H2O" autoML platform, achieving the best performance (AUC training = 0.855, AUC test = 0.789) in the training and testing data set. The model also exhibited robust accuracy (AUC valid = 0.742) in an external validation set, underscoring its credibility in anticipating VPA-induced transaminase abnormalities. The significance of the six variables was elucidated through importance ranking, partial dependence, and the TreeSHAP algorithm. This novel model offers enhanced versatility and explicability, rendering it suitable for clinicians seeking to refine parameter adjustments and address imbalanced data sets, thereby bolstering classification precision. To summarize, the personalized prediction model for VPA-treated epilepsy, established with an autoML model, displayed commendable predictive capability, furnishing clinicians with valuable insights for fostering pharmacovigilance.

7.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853828

ABSTRACT

Aging is a prominent risk factor for Alzheimer's disease (AD), but the cellular mechanisms underlying neuronal phenotypes remain elusive. Both accumulation of amyloid plaques and neurofibrillary tangles in the brain1 and age-linked organelle deficits2-7 are proposed as causes of AD phenotypes but the relationship between these events is unclear. Here, we address this question using a transdifferentiated neuron (tNeuron) model directly from human dermal fibroblasts. Patient-derived tNeurons retain aging hallmarks and exhibit AD-linked deficits. Quantitative tNeuron proteomic analyses identify aging and AD-linked deficits in proteostasis and organelle homeostasis, particularly affecting endosome-lysosomal components. The proteostasis and lysosomal homeostasis deficits in aged tNeurons are exacerbated in sporadic and familial AD tNeurons, promoting constitutive lysosomal damage and defects in ESCRT-mediated repair. We find deficits in neuronal lysosomal homeostasis lead to inflammatory cytokine secretion, cell death and spontaneous development of Aß and phospho-Tau deposits. These proteotoxic inclusions co-localize with lysosomes and damage markers and resemble inclusions in brain tissue from AD patients and APP-transgenic mice. Supporting the centrality of lysosomal deficits driving AD phenotypes, lysosome-function enhancing compounds reduce AD-associated cytokine secretion and Aß deposits. We conclude that proteostasis and organelle deficits are upstream initiating factors leading to neuronal aging and AD phenotypes.

8.
Hortic Res ; 11(6): uhae108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883334

ABSTRACT

Cupressaceae is a conifer family rich in plants of horticultural importance, including Cupressus, Chamaecyparis, Juniperus, and Thuja, yet genomic surveys are lacking for this family. Cupressus gigantea, one of the many rare conifers that are threatened by climate change and anthropogenic habitat fragmentation, plays an ever-increasing role in ecotourism in Tibet. To infer how past climate change has shaped the population evolution of this species, we generated a de novo chromosome-scale genome (10.92 Gb) and compared the species' population history and genetic load with that of a widespread close relative, C. duclouxiana. Our demographic analyses, based on 83 re-sequenced individuals from multiple populations of the two species, revealed a sharp decline of population sizes during the first part of the Quaternary. However, populations of C. duclouxiana then started to recover, while C. gigantea populations continued to decrease until recently. The total genomic diversity of C. gigantea is smaller than that of C. duclouxiana, but contrary to expectations, C. gigantea has fewer highly and mildly deleterious mutations than C. duclouxiana, and simulations and statistical tests support purifying selection during prolonged inbreeding as the explanation. Our results highlight the evolutionary consequences of decreased population size on the genetic burden of a long-lived endangered conifer with large genome size and suggest that genetic purging deserves more attention in conservation management.

9.
Chem Mater ; 36(10): 4990-5001, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38828189

ABSTRACT

Mixing multiple cations can result in a significant configurational entropy, offer a new compositional space with vast tunability, and introduce new computational challenges. For applications such as the two-step solar thermochemical hydrogen (STCH) generation techniques, we demonstrate that using density functional theory (DFT) combined with Metropolis Monte Carlo method (DFT-MC) can efficiently sample the possible cation configurations in compositionally complex perovskite oxide (CCPO) materials, with (La0.75Sr0.25)(Mn0.25Fe0.25Co0.25Al0.25)O3 as an example. In the presence of oxygen vacancies (VO), DFT-MC simulations reveal a significant increase of the local site preference of the cations (short-range ordering), compared to a more random mixing without VO. Co is found to be the redox-active element and the VO is the preferentially generated next to Co due to the stretched Co-O bonds. A clear definition of the vacancy formation energy (Evf) is proposed for CCPO in an ensemble of structures evolved in parallel from independent DFT-MC paths. By combining the distribution of Evf with VO interactions into a statistical model, the oxygen nonstoichiometry (δ), under the STCH thermal reduction and oxidation conditions, is predicted and compared with the experiments. Similar to the experiments, the predicted δ can be used to extract the enthalpy and entropy of reduction using the van't Hoff method, providing direct comparisons with the experimental results. This procedure provides a full predictive workflow for using DFT-MC to obtain possible local ordering or fully random structures, understand the redox activity of each element, and predict the thermodynamic properties of CCPOs, for computational screening and design of these CCPO materials at STCH conditions.

10.
Medicine (Baltimore) ; 103(23): e38439, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847716

ABSTRACT

BACKGROUND: The study aimed to predict the risk factors of deep vein thrombosis of lower extremity after traumatic fracture of lower extremity, so as to apply effective strategies to prevent deep vein thrombosis of lower extremity, improve survival rate, and reduce medical cost. METHODS: The English and Chinese literatures published from January 2005 to November 2023 were extracted from PubMed, Embase, Willey Library, Scopus, CNKI, Wanfang, and VIP databases. Statistical analysis was performed using Stata/SE 16.0 software. RESULTS: A total of 13 articles were included in this paper, including 2699 venous thromboembolism (VTE) patients and 130,507 normal controls. According to the meta-results, 5 independent risk factors can be identified: history of VTE was the most significant risk factor for deep vein thrombosis after traumatic lower extremity fracture (risk ratio [RR] = 6.45, 95% confidence interval [CI]: 1.64-11.26); age (≥60) was the risk factor for deep vein thrombosis after traumatic lower extremity fracture (RR = 1.60, 95% CI: 1.02-2.18); long-term braking was a risk factor for deep vein thrombosis after traumatic lower extremity fracture (RR = 1.52, 95% CI: 1.11-1.93); heart failure was a risk factor for deep vein thrombosis after traumatic lower extremity fracture (RR = 1.92, 95% CI: 1.51-2.33); obesity was a risk factor for deep vein thrombosis after traumatic lower extremity fracture (RR = 1.59, 95% CI: 1.35-1.83). CONCLUSION: The study confirmed that the history of deep vein thrombosis, age (60 + years), previous history of VTE, obesity, prolonged bed rest, and heart failure are all associated with an increased risk of VTE. By identifying these significant risk factors, we can more intensively treat patients at relatively high risk of VTE, thereby reducing the incidence of VTE. However, the limitation of the study is that the sample may not be diversified enough, and it fails to cover all potential risk factors, which may affect the universal applicability of the results. Future research should include a wider population and consider more variables in order to obtain a more comprehensive risk assessment.


Subject(s)
Lower Extremity , Venous Thrombosis , Humans , Age Factors , Fractures, Bone/complications , Heart Failure/epidemiology , Heart Failure/etiology , Lower Extremity/blood supply , Lower Extremity/injuries , Risk Factors , Venous Thrombosis/epidemiology , Venous Thrombosis/etiology , Middle Aged
11.
Chemosphere ; 362: 142415, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838870

ABSTRACT

Microplastics are difficult to degrade and widespread environmental pollutants. Coastal areas are hardest hit of microplastic pollution as they receive significant amounts of microplastics discharged from inland sources. Golden pompano (Trachinotus blochii) is a high commercial valuable marine aquaculture fish species, most of the golden pompano are raised in coastal areas, which means they are at significant risk of exposure to microplastics. Therefore, we exposed golden pompano to 10 µg/L, 100 µg/L and 1000 µg/L of 5 µm spherical polystyrene microplastics and conducted a 14-day stress experiment. Histopathology results showed the intestinal villi shrank. The 16s sequencing analysis revealed that microplastics significantly impacted the abundance and community structure of intestinal microorganisms, which may affect the metabolic function of the gastrointestinal tract. Metabolomics sequencing of the intestinal contents showed that microplastics caused disruptions in lipid, glucose, and amino acid metabolism, thus compromising the normal digestion and absorption functions in the intestinal system. In addition, the activation of various pathways, including the intestinal endocrine system, proline metabolism, and signal transduction, which can lead to the occurrence of several diseases. This study combined various methods to investigate the adverse effects of microplastics on intestinal digestion and absorption, and provided new insights into the toxic mechanisms of microplastics.

12.
Int Heart J ; 65(3): 517-527, 2024.
Article in English | MEDLINE | ID: mdl-38825496

ABSTRACT

Myocardial infarction/reperfusion (I/R) injury significantly impacts the health of older individuals. We confirmed that the level of lncRNA Peg13 was downregulated in I/R injury. However, the detailed function of Peg13 in myocardial I/R injury has not yet been explored.To detect the function of Peg13, in vivo model of I/R injury was constructed. RT-qPCR was employed to investigate RNA levels, and Western blotting was performed to assess levels of endoplasmic reticulum stress and apoptosis-associated proteins. EdU staining was confirmed to assess the cell proliferation.I/R therapy dramatically produced myocardial injury, increased the infarct area, and decreased the amount of Peg13 in myocardial tissues of mice. In addition, hypoxia/reoxygenation (H/R) notably induced the apoptosis and promoted the endoplasmic reticulum (ER) stress of HL-1 cells, while overexpression of Peg13 reversed these phenomena. Additionally, Peg13 may increase the level of Sirt1 through binding to miR-34a. Upregulation of Peg13 reversed H/R-induced ER stress via regulation of miR-34a/Sirt1 axis.LncRNA Peg13 reduces ER stress in myocardial infarction/reperfusion injury through mediation of miR-34a/Sirt1 axis. Hence, our research might shed new lights on developing new strategies for the treatment of myocardial I/R injury.


Subject(s)
Endoplasmic Reticulum Stress , MicroRNAs , Myocardial Reperfusion Injury , RNA, Long Noncoding , Sirtuin 1 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Mice , Male , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Apoptosis/genetics , Disease Models, Animal , Mice, Inbred C57BL
13.
Toxicol Appl Pharmacol ; 489: 117016, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925514

ABSTRACT

To elucidate the impact of CYP3A4 activity inhibition and genetic polymorphism on the metabolism of crizotinib. Enzymatic incubation systems for crizotinib were established, and Sprague-Dawley rats were utilized for in vivo experiments. Analytes were quantified using LC-MS/MS. Upon screening 122 drugs and natural compounds, proanthocyanidins emerged as inhibitor of crizotinib metabolism, exhibiting a relative inhibition rate of 93.7%. The IC50 values were 24.53 ± 0.32 µM in rat liver microsomes and 18.24 ± 0.12 µM in human liver microsomes. In vivo studies revealed that proanthocyanidins markedly affected the pharmacokinetic parameters of crizotinib. Co-administration led to a significant reduction in the AUC(0-t), Cmax of PF-06260182 (the primary metabolite of crizotinib), and the urinary metabolic ratio. This interaction is attributed to the mixed-type inhibition of liver microsome activity by proanthocyanidins. CYP3A4, being the principal metabolic enzyme for crizotinib, has its genetic polymorphisms significantly influencing crizotinib's pharmacokinetics. Kinetic data showed that the relative metabolic rates of crizotinib across 26 CYP3A4 variants ranged from 13.14% (CYP3A4.12, 13) to 188.57% (CYP3A4.33) when compared to the wild-type CYP3A4.1. Additionally, the inhibitory effects of proanthocyanidins varied between CYP3A4.12 and CYP3A4.33, when compared to the wild type. Our findings indicate that proanthocyanidins coadministration and CYP3A4 genetic polymorphism can significantly influence crizotinib metabolism.

14.
Bioorg Chem ; 150: 107594, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38941701

ABSTRACT

Inhibition of human dihydroorotate dehydrogenase (hDHODH) represents a promising strategy for suppressing the proliferation of cancer cells. To identify novel and potent hDHODH inhibitors, a total of 28 piperine derivatives were designed and synthesized. Their cytotoxicities against three human cancer cell lines (NCI-H226, HCT-116, and MDA-MB-231) and hDHODH inhibitory activities were also evaluated. Among them, compound H19, exhibited the strongest inhibitory activities (NCI-H226 IC50 = 0.95 µM, hDHODH IC50 = 0.21 µM). Further pharmacological investigations revealed that H19 exerted anticancer effects by inducing ferroptosis in NCI-H226 cells, with its cytotoxicity being reversed by ferroptosis inhibitors. This was supported by the intracellular growth or decline of ferroptosis markers, including lipid peroxidation, Fe2+, GSH, and 4-HNE. Overall, H19 emerges as a promising hDHODH inhibitor with potential anticancer properties warranting development.

15.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798496

ABSTRACT

Advancements in long-read transcriptome sequencing (long-RNA-seq) technology have revolutionized the study of isoform diversity. These full-length transcripts enhance the detection of various transcriptome structural variations, including novel isoforms, alternative splicing events, and fusion transcripts. By shifting the open reading frame or altering gene expressions, studies have proved that these transcript alterations can serve as crucial biomarkers for disease diagnosis and therapeutic targets. In this project, we proposed IFDlong, a bioinformatics and biostatistics tool to detect isoform and fusion transcripts using bulk or single-cell long-RNA-seq data. Specifically, the software performed gene and isoform annotation for each long-read, defined novel isoforms, quantified isoform expression by a novel expectation-maximization algorithm, and profiled the fusion transcripts. For evaluation, IFDlong pipeline achieved overall the best performance when compared with several existing tools in large-scale simulation studies. In both isoform and fusion transcript quantification, IFDlong is able to reach more than 0.8 Spearman's correlation with the truth, and more than 0.9 cosine similarity when distinguishing multiple alternative splicing events. In novel isoform simulation, IFDlong can successfully balance the sensitivity (higher than 90%) and specificity (higher than 90%). Furthermore, IFDlong has proved its accuracy and robustness in diverse in-house and public datasets on healthy tissues, cell lines and multiple types of diseases. Besides bulk long-RNA-seq, IFDlong pipeline has proved its compatibility to single-cell long-RNA-seq data. This new software may hold promise for significant impact on long-read transcriptome analysis. The IFDlong software is available at https://github.com/wenjiaking/IFDlong.

16.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38712138

ABSTRACT

Background: DNA sequencing is a critical tool in modern biology. Over the last two decades, it has been revolutionized by the advent of massively parallel sequencing, leading to significant advances in the genome and transcriptome sequencing of various organisms. Nevertheless, challenges with accuracy, lack of competitive options and prohibitive costs associated with high throughput parallel short-read sequencing persist. Results: Here, we conduct a comparative analysis using matched DNA and RNA short-reads assays between Element Biosciences' AVITI and Illumina's NextSeq 550 chemistries. Similar comparisons were evaluated for synthetic long-read sequencing for RNA and targeted single-cell transcripts between the AVITI and Illumina's NovaSeq 6000. For both DNA and RNA short-read applications, the study found that the AVITI produced significantly higher per sequence quality scores. For PCR-free DNA libraries, we observed an average 89.7% lower experimentally determined error rate when using the AVITI chemistry, compared to the NextSeq 550. For short-read RNA quantification, AVITI platform had an average of 32.5% lower error rate than that for NextSeq 550. With regards to synthetic long-read mRNA and targeted synthetic long read single cell mRNA sequencing, both platforms' respective chemistries performed comparably in quantification of genes and isoforms. The AVITI displayed a marginally lower error rate for long reads, with fewer chemistry-specific errors and a higher mutation detection rate. Conclusion: These results point to the potential of the AVITI platform as a competitive candidate in high-throughput short read sequencing analyses when juxtaposed with the Illumina NextSeq 550.

17.
J Ethnopharmacol ; 331: 118332, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735421

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Citri Reticulata Pericarpium Viride (also known Qing-Pi or QP) is a plant in the Rutaceae family, QP is a traditional Qi-regulating medicine in Chinese medicine that is compatible with other Chinese medicine components and has extensive clinical practice in treating anxiety and depression. Reports on the pharmacological effects of QP have demonstrated its neuroprotective effects and antioxidant capacities. Numerous pharmacological benefits of QP are attributed to its antioxidant abilities. Anxiety disorders are a broadly defined category of mental illnesses. Oxidative stress and an imbalance in the antioxidant defense system are typical pathological features of these disorders. AIM OF THE STUDY: The aim of this study was to evaluate the effects of QP essential oil on anxiety using animal models and investigate the underlying neurobiological mechanisms. MATERIALS AND METHODS: This study aimed to develop an animal model of anxiety using chronic restraint stress and investigate the effects of inhalation of Citri Reticulata Pericarpium Viride essential oil on anxiety-like behavior, olfactory function, and olfactory bulb neurogenesis in mice with anxiety. RESULTS: The results showed that long-term chronic restraint stimulation caused a decrease in olfactory function, significant anxiety-like behavior, and a notable reduction in the number of neurons in the olfactory bulb. However, inhalation of Citri Reticulata Pericarpium Viride essential oil reversed these effects, improving the olfactory function, neuro-stimulating effect, alleviating anxiety-like behavior, and regulating theta (4-12Hz) oscillation in the hippocampus DG area. These effects were associated with changes in the expression levels of glutamate receptor NMDAR and NeuN in olfactory bulb. CONCLUSIONS: The study revealed that mice with anxiety induced by chronic restraint stress exhibited significant olfactory dysfunction, providing strong evidence for the causal relationship between anxiety disorders and olfactory dysfunction. Moreover, QP essential oil has the potential to be developed as a therapeutic drug for anxiety disorders, in addition to its role as a complementary anxiolytic.


Subject(s)
Anti-Anxiety Agents , Anxiety , Oils, Volatile , Olfactory Bulb , Receptors, N-Methyl-D-Aspartate , Animals , Oils, Volatile/pharmacology , Oils, Volatile/isolation & purification , Male , Anxiety/drug therapy , Mice , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anti-Anxiety Agents/isolation & purification , Receptors, N-Methyl-D-Aspartate/metabolism , Behavior, Animal/drug effects , Glutamic Acid/metabolism , Neurogenesis/drug effects , Disease Models, Animal , Stress, Psychological/drug therapy
18.
J Ethnopharmacol ; 332: 118363, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38763373

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum, a renowned tonic traditional Chinese medicine, is widely recognized for the exceptional activity in soothing nerves and nourishing the brain. It has been extensively employed to alleviate various neurological disorders, notably Parkinson's disease (PD). AIM OF THE STUDY: To appraise the antiparkinsonian effect of GAA, the main bioactive constituent of G. lucidum, and clarify the molecular mechanism through the perspective of ferritinophagy-mediated dopaminergic neuron ferroptosis. MATERIALS AND METHODS: PD mouse and cell models were established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), respectively. Cell viability, behavioral tests and immunofluorescence analysis were performed to evaluate the neurotoxicity, motor dysfunction and dopaminergic loss, respectively. Biochemical assay kits were used to determine the levels of iron, lipid reactive oxygen species (ROS), malondialdehyde (MDA), total ROS and glutathione (GSH). Western blot and immunofluorescence were applied to detect the expressions of nuclear receptor co-activator 4 (NCOA4), ferritin heavy chain 1 (FTH1), p62 and LC3B. Additionally, NCOA4-overexpressing plasmid vector was constructed to verify the inhibitory effect of GAA on the neurotoxicity and ferroptosis-related parameters in PD models. RESULTS: GAA significantly mitigated MPP+/MPTP-induced neurotoxicity, motor dysfunction and dopaminergic neuron loss (p<0.01 or p<0.05). In contrast to MPP+/MPTP treatment, GAA treatment decreased the levels of iron, MDA, lipid and total ROS, while increasing the GSH level. GAA also reduced the levels of NCOA4 and LC3B, and enhanced the expressions of FTH1 and p62 in PD models (p<0.01 or p<0.05). However, the protective effect of GAA against the neurotoxicity, NCOA4-mediated ferritinophagy and ferroptosis in PD model was abolished by the overexpression of NCOA4 (p<0.01). CONCLUSION: GAA exerted a protective effect on PD, and this effect was achieved by suppressing dopaminergic neuron ferroptosis through the inhibition of NCOA4-mediated ferritinophagy.


Subject(s)
Dopaminergic Neurons , Ferritins , Ferroptosis , Mice, Inbred C57BL , Nuclear Receptor Coactivators , Animals , Ferroptosis/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Nuclear Receptor Coactivators/metabolism , Mice , Male , Ferritins/metabolism , Neuroprotective Agents/pharmacology , Autophagy/drug effects , Antiparkinson Agents/pharmacology , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Disease Models, Animal
19.
Fish Shellfish Immunol ; 150: 109644, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777252

ABSTRACT

Enteritis poses a significant threat to fish farming, characterized by symptoms of intestinal and hepatic inflammation, physiological dysfunction, and dysbiosis. Focused on the leopard coral grouper (Plectropomus leopardus) with an enteritis outbreak on a South China Sea farm, our prior scrutiny did not find any abnormalities in feeding or conventional water quality factors, nor were any specific pathogen infections related to enteritis identified. This study further elucidates their intestinal flora alterations, host responses, and their interactions to uncover the underlying pathogenetic mechanisms and facilitate effective prevention and management strategies. Enteritis-affected fish exhibited substantial differences in intestinal flora compared to control fish (P = 0.001). Notably, norank_f_Alcaligenaceae, which has a negative impact on fish health, predominated in enteritis-affected fish (91.76 %), while the probiotic genus Lactococcus dominated in controls (93.90 %). Additionally, certain genera with pathogenesis potentials like Achromobacter, Sphingomonas, and Streptococcus were more abundant in diseased fish, whereas Enterococcus and Clostridium_sensu_stricto with probiotic potentials were enriched in control fish. At the transcriptomic level, strong inflammatory responses, accompanied by impaired metabolic functions, tissue damage, and iron death signaling activation were observed in the intestines and liver during enteritis. Furthermore, correlation analysis highlighted that potential pathogen groups were positively associated with inflammation and tissue damage genes while presenting negatively correlated with metabolic function-related genes. In conclusion, dysbiosis in the intestinal microbiome, particularly an aberrantly high abundance of Alcaligenaceae with pathogenic potential may be the main trigger for this enteritis outbreak. Alcaligenaceae alongside Achromobacter, Sphingomonas, and Streptococcus emerged as biomarkers for enteritis, whereas some species of Lactococcus, Clostridium_sensu_stricto, and Enterococcus showed promise as probiotics to alleviate enteritis symptoms. These findings enhance our understanding of enteritis pathogenesis, highlight intestinal microbiota shifts in leopard coral grouper, and propose biomarkers for monitoring, probiotic selection, and enteritis management.


Subject(s)
Enteritis , Fish Diseases , Gastrointestinal Microbiome , Animals , Enteritis/veterinary , Enteritis/immunology , Enteritis/microbiology , Fish Diseases/immunology , Fish Diseases/microbiology , Perciformes/immunology , China , Gene Expression
20.
Sci Total Environ ; 935: 173172, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38740210

ABSTRACT

Chronic hypoxia can affect the growth and metabolism of fish and potentially impact gonadal development through epigenetic regulation. Trachinotus blochii (Golden pompano) is widely cultured near the coast and is sensitive to low oxygen conditions. We found that hypoxia and reoxygenation processes acted on multiple targets on the HPG axis, leading to endocrine disorders. Changes in the expression of key genes in the brain (gnrh), pituitary (fsh and lh), ovaries (cyp19a1a, foxl2, and er), and testes (dmrt1, ar, sox9, and gsdf) were associated with significant decreases in estrogen and testosterone levels. Hypoxia and reoxygenation lead to changes in DNA methylation levels in the gonads. Hypoxia upregulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in females and dnmt3a and dnmt3b in males, while reoxygenation down-regulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in males. Whole genome methylation sequencing showed that the number of differentially methylated regions was highest on chromosome 10 (5192) and lowest on chromosome 24 (275). Differentially methylated genes in females and males, as well as between males and females, were enriched in the oxytocin signaling pathway, fatty acid metabolism pathway, and HIF-1a pathway. In summary, hypoxia and reoxygenation can induce endocrine disorders, affect the expression of HPG axis genes, change the methylation pattern and modification pattern of gonad DNA, and then have potential effects on gonad development.


Subject(s)
DNA Methylation , Animals , Male , Female , Gonads/metabolism , Hypoxia , Epigenesis, Genetic , Fishes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...