Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853985

ABSTRACT

Exploring the intricate relationship between brain's structure and function, and how this affects subjective experience is a fundamental pursuit in neuroscience. Psychedelic substances offer a unique insight into the influences of specific neurotransmitter systems on perception, cognition and consciousness. Specifically, their impact on brain function propagates across the structural connectome - a network of white matter pathways linking different regions. To comprehensively grasp the effects of psychedelic compounds on brain function, we used a theoretically rigorous framework known as connectome harmonic decomposition. This framework provides a robust method to characterize how brain function intricately depends on the organized network structure of the human connectome. We show that the connectome harmonic repertoire under DMT is reshaped in line with other reported psychedelic compounds - psilocybin, LSD and ketamine. Furthermore, we show that the repertoire entropy of connectome harmonics increases under DMT, as with those other psychedelics. Importantly, we demonstrate for the first time that measures of energy spectrum difference and repertoire entropy of connectome harmonics indexes the intensity of subjective experience of the participants in a time-resolved manner reflecting close coupling between connectome harmonics and subjective experience.

2.
Nat Commun ; 15(1): 4745, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834553

ABSTRACT

Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.


Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Brain/diagnostic imaging , Brain/physiology , Image Processing, Computer-Assisted/methods , Male , Adult , Female , Nerve Net/physiology , Nerve Net/diagnostic imaging , Brain Mapping/methods , Young Adult
3.
PLoS Comput Biol ; 20(6): e1012178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829900

ABSTRACT

Striking progress has been made in understanding cognition by analyzing how the brain is engaged in different modes of information processing. For instance, so-called synergistic information (information encoded by a set of neurons but not by any subset) plays a key role in areas of the human brain linked with complex cognition. However, two questions remain unanswered: (a) how and why a cognitive system can become highly synergistic; and (b) how informational states map onto artificial neural networks in various learning modes. Here we employ an information-decomposition framework to investigate neural networks performing cognitive tasks. Our results show that synergy increases as networks learn multiple diverse tasks, and that in tasks requiring integration of multiple sources, performance critically relies on synergistic neurons. Overall, our results suggest that synergy is used to combine information from multiple modalities-and more generally for flexible and efficient learning. These findings reveal new ways of investigating how and why learning systems employ specific information-processing strategies, and support the principle that the capacity for general-purpose learning critically relies on the system's information dynamics.


Subject(s)
Brain , Cognition , Learning , Models, Neurological , Neural Networks, Computer , Humans , Learning/physiology , Cognition/physiology , Brain/physiology , Computational Biology , Neurons/physiology
4.
Trends Neurosci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824075

ABSTRACT

Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.

5.
Article in English | MEDLINE | ID: mdl-38839036

ABSTRACT

BACKGROUND: Heavy alcohol use (HAU) and its associated conditions, such as alcohol use disorder (AUD), impact millions of individuals worldwide. While our understanding of the neurobiological correlates of alcohol use has evolved substantially, we still lack models incorporating whole-brain neuroanatomical, functional, and pharmacological information under one framework. METHODS: Here, we utilize diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in N = 130 individuals with a high amount of current alcohol use. We compared these alcohol using individuals to N = 308 individuals with minimal use of any substances. RESULTS: We find that individuals with HAU had less dynamic and complex brain activity, and through leveraging network control theory, had increased control energy to complete transitions between activation states. Further, using separately acquired positron emission tomography (PET) data, we deploy an in silico evaluation demonstrating that decreased D2 receptor levels, as found previously in individuals with AUD, may relate to our observed findings. CONCLUSIONS: This work demonstrates that whole-brain, multimodal imaging information can be combined under a network control framework to identify and evaluate neurobiological correlates and mechanisms of heavy alcohol use.

6.
Cell Rep Phys Sci ; 5(4): 101892, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38720789

ABSTRACT

Understanding how different networks relate to each other is key for understanding complex systems. We introduce an intuitive yet powerful framework to disentangle different ways in which networks can be (dis)similar and complementary to each other. We decompose the shortest paths between nodes as uniquely contributed by one source network, or redundantly by either, or synergistically by both together. Our approach considers the networks' full topology, providing insights at multiple levels of resolution: from global statistics to individual paths. Our framework is widely applicable across scientific domains, from public transport to brain networks. In humans and 124 other species, we demonstrate the prevalence of unique contributions by long-range white-matter fibers in structural brain networks. Across species, efficient communication also relies on significantly greater synergy between long-range and short-range fibers than expected by chance. Our framework could find applications for designing network systems or evaluating existing ones.

9.
Nat Commun ; 15(1): 2171, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462641

ABSTRACT

A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.


Subject(s)
Anesthetics , Propofol , Animals , Consciousness/physiology , Brain/diagnostic imaging , Propofol/pharmacology , Cerebral Cortex , Primates , Thalamus/diagnostic imaging , Anesthetics/pharmacology
10.
Comput Biol Med ; 170: 107857, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244468

ABSTRACT

Recent research is revealing how cognitive processes are supported by a complex interplay between the brain and the rest of the body, which can be investigated by the analysis of physiological features such as breathing rhythms, heart rate, and skin conductance. Heart rate dynamics are of particular interest as they provide a way to track the sympathetic and parasympathetic outflow from the autonomic nervous system, which is known to play a key role in modulating attention, memory, decision-making, and emotional processing. However, extracting useful information from heartbeats about the autonomic outflow is still challenging due to the noisy estimates that result from standard signal-processing methods. To advance this state of affairs, we propose a novel approach in how to conceptualise and model heart rate: instead of being a mere summary of the observed inter-beat intervals, we introduce a modelling framework that views heart rate as a hidden stochastic process that drives the observed heartbeats. Moreover, by leveraging the rich literature of state-space modelling and Bayesian inference, our proposed framework delivers a description of heart rate dynamics that is not a point estimate but a posterior distribution of a generative model. We illustrate the capabilities of our method by showing that it recapitulates linear properties of conventional heart rate estimators, while exhibiting a better discriminative power for metrics of dynamical complexity compared across different physiological states.


Subject(s)
Autonomic Nervous System , Heart , Heart Rate/physiology , Bayes Theorem , Autonomic Nervous System/physiology , Brain/physiology
11.
Trends Cogn Sci ; 28(4): 352-368, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199949

ABSTRACT

To explain how the brain orchestrates information-processing for cognition, we must understand information itself. Importantly, information is not a monolithic entity. Information decomposition techniques provide a way to split information into its constituent elements: unique, redundant, and synergistic information. We review how disentangling synergistic and redundant interactions is redefining our understanding of integrative brain function and its neural organisation. To explain how the brain navigates the trade-offs between redundancy and synergy, we review converging evidence integrating the structural, molecular, and functional underpinnings of synergy and redundancy; their roles in cognition and computation; and how they might arise over evolution and development. Overall, disentangling synergistic and redundant information provides a guiding principle for understanding the informational architecture of the brain and cognition.


Subject(s)
Brain , Cognition , Humans
12.
Brain ; 147(1): 56-80, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37703310

ABSTRACT

Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.


Subject(s)
Cerebral Cortex , Receptor, Serotonin, 5-HT2A , Adult , Humans , Brain , Cerebral Cortex/physiology , Cognition/physiology , Neuroimaging
13.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077021

ABSTRACT

Heavy alcohol use and its associated conditions, such as alcohol use disorder (AUD), impact millions of individuals worldwide. While our understanding of the neurobiological correlates of AUD has evolved substantially, we still lack models incorporating whole-brain neuroanatomical, functional, and pharmacological information under one framework. Here, we utilize diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in N = 130 individuals with a high amount of current alcohol use. We compared these alcohol using individuals to N = 308 individuals with minimal use of any substances. We find that individuals with heavy alcohol use had less dynamic and complex brain activity, and through leveraging network control theory, had increased control energy to complete transitions between activation states. Further, using separately acquired positron emission tomography (PET) data, we deploy an in silico evaluation demonstrating that decreased D2 receptor levels, as found previously in individuals with AUD, may relate to our observed findings. This work demonstrates that whole-brain, multimodal imaging information can be combined under a network control framework to identify and evaluate neurobiological correlates and mechanisms of AUD.

14.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014199

ABSTRACT

The human brain is characterised by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain: both with respect to the brains of other individuals, and the brains of another species. We report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organised: it co-localises with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol, and reversed upon recovery. Providing convergent evidence, we show that under anaesthesia the functional connectivity of the human brain becomes more similar to the macaque brain. Finally, anaesthesia diminishes the match between spontaneous brain activity and meta-analytic brain patterns aggregated from the NeuroSynth engine. Collectively, the present results reveal that anaesthetised human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.

15.
Sci Adv ; 9(24): eadf8332, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37315149

ABSTRACT

To understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain's rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomography, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphenidate. Our results reveal a many-to-many mapping between psychoactive drugs' effects on brain function and multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are organized along hierarchical gradients of brain structure and function. Last, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganization of the brain's functional architecture.


Subject(s)
Ketamine , Methylphenidate , Humans , Brain , Membrane Transport Proteins , Modafinil
16.
Neuroimage ; 275: 120162, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37196986

ABSTRACT

Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.


Subject(s)
Brain Injuries , Consciousness , Humans , Consciousness/physiology , Consciousness Disorders/diagnostic imaging , Brain Injuries/complications , Neuroimaging , Computer Simulation
17.
bioRxiv ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37214949

ABSTRACT

Psychedelics offer a profound window into the functioning of the human brain and mind through their robust acute effects on perception, subjective experience, and brain activity patterns. In recent work using a receptor-informed network control theory framework, we demonstrated that the serotonergic psychedelics lysergic acid diethylamide (LSD) and psilocybin flatten the brain's control energy landscape in a manner that covaries with more dynamic and entropic brain activity. Contrary to LSD and psilocybin, whose effects last for hours, the serotonergic psychedelic N,N-dimethyltryptamine (DMT) rapidly induces a profoundly immersive altered state of consciousness lasting less than 20 minutes, allowing for the entirety of the drug experience to be captured during a single resting-state fMRI scan. Using network control theory, which quantifies the amount of input necessary to drive transitions between functional brain states, we integrate brain structure and function to map the energy trajectories of 14 individuals undergoing fMRI during DMT and placebo. Consistent with previous work, we find that global control energy is reduced following injection with DMT compared to placebo. We additionally show longitudinal trajectories of global control energy correlate with longitudinal trajectories of EEG signal diversity (a measure of entropy) and subjective ratings of drug intensity. We interrogate these same relationships on a regional level and find that the spatial patterns of DMT's effects on these metrics are correlated with serotonin 2a receptor density (obtained from separately acquired PET data). Using receptor distribution and pharmacokinetic information, we were able to successfully recapitulate the effects of DMT on global control energy trajectories, demonstrating a proof-of-concept for the use of control models in predicting pharmacological intervention effects on brain dynamics.

18.
bioRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993597

ABSTRACT

Patterns of neural activity underlie human cognition. Transitions between these patterns are orchestrated by the brain's network architecture. What are the mechanisms linking network structure to cognitively relevant activation patterns? Here we implement principles of network control to investigate how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic engine. We also systematically incorporate neurotransmitter receptor density maps (18 receptors and transporters) and disease-related cortical abnormality maps (11 neurodegenerative, psychiatric and neurodevelopmental diseases; N = 17 000 patients, N = 22 000 controls). Integrating large-scale multimodal neuroimaging data from functional MRI, diffusion tractography, cortical morphometry, and positron emission tomography, we simulate how anatomically-guided transitions between cognitive states can be reshaped by pharmacological or pathological perturbation. Our results provide a comprehensive look-up table charting how brain network organisation and chemoarchitecture interact to manifest different cognitive topographies. This computational framework establishes a principled foundation for systematically identifying novel ways to promote selective transitions between desired cognitive topographies.

19.
Neuroimage ; 269: 119926, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36740030

ABSTRACT

High-level brain functions are widely believed to emerge from the orchestrated activity of multiple neural systems. However, lacking a formal definition and practical quantification of emergence for experimental data, neuroscientists have been unable to empirically test this long-standing conjecture. Here we investigate this fundamental question by leveraging a recently proposed framework known as "Integrated Information Decomposition," which establishes a principled information-theoretic approach to operationalise and quantify emergence in dynamical systems - including the human brain. By analysing functional MRI data, our results show that the emergent and hierarchical character of neural dynamics is significantly diminished in chronically unresponsive patients suffering from severe brain injury. At a functional level, we demonstrate that emergence capacity is positively correlated with the extent of hierarchical organisation in brain activity. Furthermore, by combining computational approaches from network control theory and whole-brain biophysical modelling, we show that the reduced capacity for emergent and hierarchical dynamics in severely brain-injured patients can be mechanistically explained by disruptions in the patients' structural connectome. Overall, our results suggest that chronic unresponsiveness resulting from severe brain injury may be related to structural impairment of the fundamental neural infrastructures required for brain dynamics to support emergence.


Subject(s)
Brain Injuries , Connectome , Nervous System Physiological Phenomena , Humans , Connectome/methods , Brain , Magnetic Resonance Imaging/methods
20.
Brain ; 146(8): 3484-3499, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36811945

ABSTRACT

Chronic post-concussive symptoms are common after mild traumatic brain injury (mTBI) and are difficult to predict or treat. Thalamic functional integrity is particularly vulnerable in mTBI and may be related to long-term outcomes but requires further investigation. We compared structural MRI and resting state functional MRI in 108 patients with a Glasgow Coma Scale (GCS) of 13-15 and normal CT, and 76 controls. We examined whether acute changes in thalamic functional connectivity were early markers for persistent symptoms and explored neurochemical associations of our findings using PET data. Of the mTBI cohort, 47% showed incomplete recovery 6 months post-injury. Despite the absence of structural changes, we found acute thalamic hyperconnectivity in mTBI, with specific vulnerabilities of individual thalamic nuclei. Acute fMRI markers differentiated those with chronic post-concussive symptoms, with time- and outcome-dependent relationships in a sub-cohort followed longitudinally. Moreover, emotional and cognitive symptoms were associated with changes in thalamic functional connectivity to known serotonergic and noradrenergic targets, respectively. Our findings suggest that chronic symptoms can have a basis in early thalamic pathophysiology. This may aid identification of patients at risk of chronic post-concussive symptoms following mTBI, provide a basis for development of new therapies and facilitate precision medicine application of these therapies.


Subject(s)
Brain Concussion , Brain Injuries , Post-Concussion Syndrome , Humans , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Post-Concussion Syndrome/diagnostic imaging , Thalamus/diagnostic imaging , Emotions , Magnetic Resonance Imaging , Brain
SELECTION OF CITATIONS
SEARCH DETAIL
...