Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Innovation (Camb) ; 4(1): 100354, 2023 Jan 30.
Article En | MEDLINE | ID: mdl-36457892

Oxygen and iron are the most abundant elements on Earth, and their compounds are key planet-forming components. While oxygen is pervasive in the mantle, its presence in the solid inner core is still debatable. Yet, this issue is critical to understanding the co-evolution and the geomagnetic field generation. Thus far, iron monoxide (FeO) is the only known stoichiometric compound in the Fe-FeO system, and the existence of iron-rich Fe n O compounds has long been speculated. Here, we report that iron reacts with FeO and Fe2O3 at 220-260 GPa and 3000-3500 K in laser-heated diamond anvil cells. Ab initio structure searches using the adaptive genetic algorithm indicate that a series of stable stoichiometric Fe n O compounds (with n > 1) can be formed. Like ε-Fe and B8-FeO, Fe n O compounds have close-packed layered structures featuring oxygen-only single layers separated by iron-only layers. Two solid-solution models with compositions close to Fe2O, the most stable Fe-rich phase identified, explain the X-ray diffraction patterns of the experimental reaction products quenched to room temperature. These results suggest that Fe-rich Fe n O compounds with close-packed layered motifs might be stable under inner core conditions. Future studies of the elastic, rheological, and thermal transport properties of these more anisotropic Fe n O solids should provide new insights into the seismic features of the inner core, inner core formation process and composition, and the thermal evolution of the planet.

2.
Natl Sci Rev ; 8(4): nwaa096, 2021 Apr.
Article En | MEDLINE | ID: mdl-34691604

As the reaction product of subducted water and the iron core, FeO2 with more oxygen than hematite (Fe2O3) has been recently recognized as an important component in the D" layer just above the Earth's core-mantle boundary. Here, we report a new oxygen-excess phase (Mg, Fe)2O3+ δ (0 < δ < 1, denoted as 'OE-phase'). It forms at pressures greater than 40 gigapascal when (Mg, Fe)-bearing hydrous materials are heated over 1500 kelvin. The OE-phase is fully recoverable to ambient conditions for ex situ investigation using transmission electron microscopy, which indicates that the OE-phase contains ferric iron (Fe3+) as in Fe2O3 but holds excess oxygen through interactions between oxygen atoms. The new OE-phase provides strong evidence that H2O has extraordinary oxidation power at high pressure. Unlike the formation of pyrite-type FeO2Hx which usually requires saturated water, the OE-phase can be formed with under-saturated water at mid-mantle conditions, and is expected to be more ubiquitous at depths greater than 1000 km in the Earth's mantle. The emergence of oxygen-excess reservoirs out of primordial or subducted (Mg, Fe)-bearing hydrous materials may revise our view on the deep-mantle redox chemistry.

...