Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Proc Natl Acad Sci U S A ; 121(20): e2318773121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38713628

The current paradigm about the function of T cell immune checkpoints is that these receptors switch on inhibitory signals upon cognate ligand interaction. We here revisit this simple switch model and provide evidence that the T cell lineage protein THEMIS enhances the signaling threshold at which the immune checkpoint BTLA (B- and T-lymphocyte attenuator) represses T cell responses. THEMIS is recruited to the cytoplasmic domain of BTLA and blocks its signaling capacity by promoting/stabilizing the oxidation of the catalytic cysteine of the tyrosine phosphatase SHP-1. In contrast, THEMIS has no detectable effect on signaling pathways regulated by PD-1 (Programmed cell death protein 1), which depend mainly on the tyrosine phosphatase SHP-2. BTLA inhibitory signaling is tuned according to the THEMIS expression level, making CD8+ T cells more resistant to BTLA-mediated inhibition than CD4+ T cells. In the absence of THEMIS, the signaling capacity of BTLA is exacerbated, which results in the attenuation of signals driven by the T cell antigen receptor and by receptors for IL-2 and IL-15, consequently hampering thymocyte positive selection and peripheral CD8+ T cell maintenance. By characterizing the pivotal role of THEMIS in restricting the transmission of BTLA signals, our study suggests that immune checkpoint operability is conditioned by intracellular signal attenuators.


CD8-Positive T-Lymphocytes , Receptors, Immunologic , Signal Transduction , Receptors, Immunologic/metabolism , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Differentiation , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
2.
Elife ; 112022 12 15.
Article En | MEDLINE | ID: mdl-36519536

The ability to proliferate is a common feature of most T-cell populations. However, proliferation follows different cell-cycle dynamics and is coupled to different functional outcomes according to T-cell subsets. Whether the mitotic machineries supporting these qualitatively distinct proliferative responses are identical remains unknown. Here, we show that disruption of the microtubule-associated protein LIS1 in mouse models leads to proliferative defects associated with a blockade of T-cell development after ß-selection and of peripheral CD4+ T-cell expansion after antigen priming. In contrast, cell divisions in CD8+ T cells occurred independently of LIS1 following T-cell antigen receptor stimulation, although LIS1 was required for proliferation elicited by pharmacological activation. In thymocytes and CD4+ T cells, LIS1 deficiency did not affect signaling events leading to activation but led to an interruption of proliferation after the initial round of division and to p53-induced cell death. Proliferative defects resulted from a mitotic failure, characterized by the presence of extra-centrosomes and the formation of multipolar spindles, causing abnormal chromosomes congression during metaphase and separation during telophase. LIS1 was required to stabilize dynein/dynactin complexes, which promote chromosome attachment to mitotic spindles and ensure centrosome integrity. Together, these results suggest that proliferative responses are supported by distinct mitotic machineries across T-cell subsets.


1-Alkyl-2-acetylglycerophosphocholine Esterase , Microtubule-Associated Proteins , T-Lymphocytes , Animals , Mice , Cell Lineage , Centrosome/metabolism , Chromosome Segregation , Dyneins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis , Spindle Apparatus/metabolism
3.
Sci Signal ; 15(742): eabl5343, 2022 07 12.
Article En | MEDLINE | ID: mdl-35857631

Signals that determine the differentiation of naïve CD4+ T helper (TH) cells into specific effector cell subsets are primarily stimulated by cytokines, but additional signals are required to adjust the magnitude of TH cell responses and set the balance between effective immunity and immunological tolerance. By inducing the post-thymic deletion of the T cell lineage signaling protein THEMIS, we showed that THEMIS promoted the development of optimal type 1 immune responses to foreign antigens but stimulated signals that favored encephalitogenic responses to self-neuroantigens. THEMIS was required to stimulate the expression of the gene encoding the transcriptional regulator T-BET and the production of the cytokine interferon-γ (IFN-γ), and it enhanced the ability of encephalitogenic CD4+ T cells to migrate into the central nervous system. Consistently, analysis of THEMIS expression in polarized CD4+ T cells showed that THEMIS was selectively increased in abundance in TH1 cells. The stimulation of predifferentiated effector CD4+ T cells with antigen-presenting cells revealed a stimulatory function for THEMIS on type 1 cytokine responses, similar to those observed ex vivo after immunization. In contrast, THEMIS exerted opposing effects on naïve CD4+ T cells in vitro by inhibiting the T cell receptor (TCR)-mediated signals that lead to TH1 cell responses. These data suggest that THEMIS exerts TCR-independent functions in effector T cells, which increase the magnitude of normal and pathogenic TH1 cell-mediated responses.


Receptors, Antigen, T-Cell , T-Lymphocytes , Antigen-Presenting Cells , Cytokines , Immunity , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Th1 Cells
4.
Biomed J ; 45(2): 334-346, 2022 04.
Article En | MEDLINE | ID: mdl-35346866

The activity of T cells is finely controlled by a set of negative regulators of T-cell antigen receptor (TCR)-mediated signaling. However, how those negative regulators are themselves controlled to prevent ineffective TCR-mediated responses remain poorly understood. Thymocyte-expressed molecule involved in selection (THEMIS) has been characterized over a decade ago as an important player of T cell development. Although the molecular function of THEMIS has long remained puzzling and subject to controversies, latest investigations suggest that THEMIS stimulates TCR-mediated signaling by repressing the tyrosine phosphatases SHP-1 and SHP-2 which exert regulatory function on T cell activation. Recent evidences also point to a role for THEMIS in peripheral T cells beyond its role on thymic selection. Here, we present an overview of the past research on THEMIS in the context of T cell development and peripheral T cell function and discuss the possible implication of THEMIS-based mechanisms on TCR-dependent and independent signaling outcomes.


Intracellular Signaling Peptides and Proteins , T-Lymphocytes , Thymus Gland , Cell Differentiation , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction , T-Lymphocytes/immunology , Thymus Gland/immunology
...