Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 262
1.
Cortex ; 175: 41-53, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703715

Visual search is speeded when a target is repeatedly presented in an invariant scene context of nontargets (contextual cueing), demonstrating observers' capability for using statistical long-term memory (LTM) to make predictions about upcoming sensory events, thus improving attentional orienting. In the current study, we investigated whether expectations arising from individual, learned environmental structures can encompass multiple target locations. We recorded event-related potentials (ERPs) while participants performed a contextual cueing search task with repeated and non-repeated spatial item configurations. Notably, a given search display could be associated with either a single target location (standard contextual cueing) or two possible target locations. Our result showed that LTM-guided attention was always limited to only one target position in single- but also in the dual-target displays, as evidenced by expedited reaction times (RTs) and enhanced N1pc and N2pc deflections contralateral to one ("dominant") target of up to two repeating target locations. This contrasts with the processing of non-learned ("minor") target positions (in dual-target displays), which revealed slowed RTs alongside an initial N1pc "misguidance" signal that then vanished in the subsequent N2pc. This RT slowing was accompanied by enhanced N200 and N400 waveforms over fronto-central electrodes, suggesting that control mechanisms regulate the competition between dominant and minor targets. Our study thus reveals a dissociation in processing dominant versus minor targets: While LTM templates guide attention to dominant targets, minor targets necessitate control processes to overcome the automatic bias towards previously learned, dominant target locations.


Attention , Cues , Electroencephalography , Evoked Potentials , Reaction Time , Humans , Attention/physiology , Male , Female , Evoked Potentials/physiology , Reaction Time/physiology , Young Adult , Adult , Electroencephalography/methods , Visual Perception/physiology , Photic Stimulation/methods , Orientation/physiology , Memory, Long-Term/physiology
2.
Psychon Bull Rev ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689187

Visual search is facilitated when targets are repeatedly encountered at a fixed position relative to an invariant distractor layout, compared to random distractor arrangements. However, standard investigations of this contextual-facilitation effect employ fixed distractor layouts that predict a constant target location, which does not always reflect real-world situations where the target location may vary relative to an invariant distractor arrangement. To explore the mechanisms involved in contextual learning, we employed a training-test procedure, introducing not only the standard full-repeated displays with fixed target-distractor locations but also distractor-repeated displays in which the distractor arrangement remained unchanged but the target locations varied. During the training phase, participants encountered three types of display: full-repeated, distractor-repeated, and random arrangements. The results revealed full-repeated displays to engender larger performance gains than distractor-repeated displays, relative to the random-display baseline. In the test phase, the gains were substantially reduced when full-repeated displays changed into distractor-repeated displays, while the transition from distractor-repeated to full-repeated displays failed to yield additional gains. We take this pattern to indicate that contextual learning can improve performance with both predictive and non-predictive (repeated) contexts, employing distinct mechanisms: contextual guidance and context suppression, respectively. We consider how these mechanisms might be implemented (neuro-)computationally.

3.
Psychophysiology ; 61(7): e14557, 2024 Jul.
Article En | MEDLINE | ID: mdl-38459638

When memorizing an integrated object such as a Kanizsa figure, the completion of parts into a coherent whole is attained by grouping processes which render a whole-object representation in visual working memory (VWM). The present study measured event-related potentials (ERPs) and oscillatory amplitudes to track these processes of encoding and representing multiple features of an object in VWM. To this end, a change detection task was performed, which required observers to memorize both the orientations and colors of six "pacman" items while inducing configurations of the pacmen that systematically varied in terms of their grouping strength. The results revealed an effect of object configuration in VWM despite physically constant visual input: change detection for both orientation and color features was more accurate with increased grouping strength. At the electrophysiological level, the lateralized ERPs and alpha activity mirrored this behavioral pattern. Perception of the orientation features gave rise to the encoding of a grouped object as reflected by the amplitudes of the Ppc. The grouped object structure, in turn, modulated attention to both orientation and color features as indicated by the enhanced N1pc and N2pc. Finally, during item retention, the representation of individual objects and the concurrent allocation of attention to these memorized objects were modulated by grouping, as reflected by variations in the CDA amplitude and a concurrent lateralized alpha suppression, respectively. These results indicate that memorizing multiple features of grouped, to-be-integrated objects involves multiple, sequential stages of processing, providing support for a hierarchical model of object representations in VWM.


Alpha Rhythm , Electroencephalography , Evoked Potentials , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Male , Female , Young Adult , Alpha Rhythm/physiology , Evoked Potentials/physiology , Adult , Visual Perception/physiology , Attention/physiology , Photic Stimulation , Pattern Recognition, Visual/physiology
4.
Article En | MEDLINE | ID: mdl-38177944

Hypothesis-driven research rests on clearly articulated scientific theories. The building blocks for communicating these theories are scientific terms. Obviously, communication - and thus, scientific progress - is hampered if the meaning of these terms varies idiosyncratically across (sub)fields and even across individual researchers within the same subfield. We have formed an international group of experts representing various theoretical stances with the goal to homogenize the use of the terms that are most relevant to fundamental research on visual distraction in visual search. Our discussions revealed striking heterogeneity and we had to invest much time and effort to increase our mutual understanding of each other's use of central terms, which turned out to be strongly related to our respective theoretical positions. We present the outcomes of these discussions in a glossary and provide some context in several essays. Specifically, we explicate how central terms are used in the distraction literature and consensually sharpen their definitions in order to enable communication across theoretical standpoints. Where applicable, we also explain how the respective constructs can be measured. We believe that this novel type of adversarial collaboration can serve as a model for other fields of psychological research that strive to build a solid groundwork for theorizing and communicating by establishing a common language. For the field of visual distraction, the present paper should facilitate communication across theoretical standpoints and may serve as an introduction and reference text for newcomers.

5.
Psychon Bull Rev ; 31(1): 148-155, 2024 Feb.
Article En | MEDLINE | ID: mdl-37434045

Visual search for a target is faster when the spatial layout of distractors is repeatedly encountered, illustrating that statistical learning of contextual invariances facilitates attentional guidance (contextual cueing; Chun & Jiang, 1998, Cognitive Psychology, 36, 28-71). While contextual learning is usually relatively efficient, relocating the target to an unexpected location (within an otherwise unchanged search layout) typically abolishes contextual cueing and the benefits deriving from invariant contexts recover only slowly with extensive training (Zellin et al., 2014, Psychonomic Bulletin & Review, 21(4), 1073-1079). However, a recent study by Peterson et al. (2022, Attention, Perception, & Psychophysics, 84(2), 474-489) in fact reported rather strong adaptation of spatial contextual memories following target position changes, thus contrasting with prior work. Peterson et al. argued that previous studies may have been underpowered to detect a reliable recovery of contextual cueing after the change. However, their experiments also used a specific display design that frequently presented the targets at the same locations, which might reduce the predictability of the contextual cues thereby facilitating its flexible relearning (irrespective of statistical power). The current study was a (high-powered) replication of Peterson et al., taking into account both statistical power and target overlap in context-memory adaptation. We found reliable contextual cueing for the initial target location irrespective of whether the targets shared their location across multiple displays, or not. However, contextual adaptation following a target relocation event occurred only when target locations were shared. This suggests that cue predictability modulates contextual adaptation, over and above a possible (yet negligible) influence of statistical power.


Attention , Cues , Humans , Mental Recall , Spatial Memory , Psychophysics , Reaction Time
6.
Atten Percept Psychophys ; 86(2): 439-456, 2024 Feb.
Article En | MEDLINE | ID: mdl-37407797

The present study investigated whether the integration of separate parts into a whole-object representation varies with the amount of available attentional resources. To this end, two experiments were performed, which required observers to maintain central fixation while searching in peripheral vision for a target among various distractor configurations. The target could either be a "grouped" whole-object Kanizsa figure, or an "ungrouped" configuration of identical figural parts, but which do not support object completion processes to the same extent. In the experiments, accuracies and changes in pupil size were assessed, with the latter reflecting a marker of the covert allocation of attention in the periphery. Experiment 1 revealed a performance benefit for grouped (relative to ungrouped) targets, which increased with decreasing distance from fixation. By contrast, search for ungrouped targets was comparably poor in accuracy without revealing any eccentricity-dependent variation. Moreover, measures of pupillary dilation mirrored this eccentricity-dependent advantage in localizing grouped targets. Next, in Experiment 2, an additional attention-demanding foveal task was introduced in order to further reduce the availability of attentional resources for the peripheral detection task. This additional task hampered performance overall, alongside with corresponding pupil size changes. However, there was still a substantial benefit for grouped over ungrouped targets in both the behavioral and the pupillometric data. This shows that perceptual grouping scales with the allocation of attention even when only residual attentional resources are available to trigger the representation of a complete (target) object, thus illustrating that object completion operates in the "near absence" of attention.


Attention , Visual Perception , Humans , Photic Stimulation
7.
J Exp Psychol Learn Mem Cogn ; 50(5): 699-711, 2024 May.
Article En | MEDLINE | ID: mdl-37917510

Visual search is faster when a fixed target location is paired with a spatially invariant (vs. randomly changing) distractor configuration, thus indicating that repeated contexts are learned, thereby guiding attention to the target (contextual cueing [CC]). Evidence for memory-guided attention has also been revealed with electrophysiological (electroencephalographic [EEG]) recordings, starting with an enhanced early posterior negativity (N1pc), which signals a preattentive bias toward the target, and, subsequently, attentional and postselective components, such as the posterior contralateral negativity (PCN) and contralateral delay activity (CDA), respectively. Despite effective learning, relearning of previously acquired contexts is inflexible: The CC benefits disappear when the target is relocated to a new position within an otherwise invariant context and corresponding EEG correlates are diminished. The present study tested whether global statistical properties that induce predictions going beyond the immediate invariant layout can facilitate contextual relearning. Global statistical regularities were implemented by presenting repeated and nonrepeated displays in separate streaks (mini blocks) of trials in the relocation phase, with individual displays being presented in a fixed and thus predictable order. Our results revealed a significant CC effect (and an associated modulation of the N1pc, PCN, and CDA components) during initial learning. Critically, the global statistical regularities in the relocation phase also resulted in a reliable CC effect, thus revealing effective relearning with predictive streaks. Moreover, this relearning was reflected in an enhanced PCN amplitude for repeated relative to nonrepeated contexts. Temporally ordered contexts may thus adapt memory-based guidance of attention, particularly the allocation of covert attention in the visual display. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Cues , Learning , Humans , Learning/physiology , Mental Recall , Adaptation, Physiological , Reaction Time/physiology
8.
Psychol Res ; 88(2): 417-437, 2024 Mar.
Article En | MEDLINE | ID: mdl-37819500

Some studies have suggested that emotion-associated features might influence attentional capture. However, demonstrating valence-dependent distractor interference has proven challenging, possibly due to the neglect of individuals' color-valence preferences in standard, averaged reaction-time (RT) measures. To address this, we investigated valence-driven attentional-capture using an association phase in which emotionally neutral vs. positive-feedback photographs were paired with two alternative target colors, red vs. green. This was followed by a test phase requiring participants to search for a pop-out shape target in the presence or absence of an emotion-associated color. In Experiments 1 and 2, this color could only appear in a distractor, while in Experiment 3, it appeared in the target. Analyzing the standard, averaged RT measures, we found no significant valence association or valence-modulated attentional capture. However, correlational analyses revealed a positive relationship between individual participants' color-valence preference during the association phase and their valence-based effect during the test phase. Moreover, most individuals favored red over green in the association phase, leading to marked color-related asymmetries in the average measures. Crucially, the presence of the valence-preferred color anywhere in the test display facilitated RTs. This effect persisted even when the color appeared in one of the distractors (Experiments 1 and 2), at variance with this distractor capturing attention. These findings suggest that task-irrelevant valence-preferred color signals were registered pre-attentively and boosted performance, likely by raising the general (non-spatial) alertness level. However, these signals were likely kept out of attentional-priority computation to prevent inadvertent attentional capture.


Attention , Emotions , Humans , Reaction Time , Color Perception
9.
Psychol Sci ; 34(10): 1087-1100, 2023 Oct.
Article En | MEDLINE | ID: mdl-37650877

Visual working memory (VWM) is limited in capacity, though memorizing meaningful objects may refine this limitation. However, meaningful and meaningless stimuli typically differ perceptually, and objects' associations with meaning are usually already established outside the laboratory, potentially confounding experimental findings. Here, in two experiments with young adults (N = 45 and N = 20), we controlled for these influences by having observers actively learn associations of (for them) initially meaningless stimuli: Chinese characters, half of which were consistently paired with pictures of animals or everyday objects in a learning phase. This phase was preceded and followed by a (pre- and postlearning) change-detection task to assess VWM performance. The results revealed that short-term retention was enhanced after learning, particularly for meaning-associated characters, although participants did not quite reach the accuracy level attained by native Chinese observers (young adults, N = 20). These results thus provide direct experimental evidence that participants' VWM of objects is boosted by them having acquired a long-term-memory association with meaning.

10.
J Cogn ; 6(1): 38, 2023.
Article En | MEDLINE | ID: mdl-37426059

In a healthy scientific community, theories influence each other and promising ideas are embraced by competing theoretical camps. We are therefore pleased that Theeuwes (2023) now agrees with core points of our theoretical position (Liesefeld et al., 2021; Liesefeld & Müller, 2020), most notably, the central role target salience plays for interference by salient distractors and the conditions that facilitate clump scanning. The present commentary traces the development of Theeuwes' theorizing and carves out remaining discrepancies, most notably the conjecture of two qualitatively distinct search modes. Such a dichotomy is embraced by us, but decidedly rejected by Theeuwes. Accordingly, we selectively review some evidence in favor of search modes that appear crucial to the current debate.

11.
Psychophysiology ; 60(12): e14383, 2023 12.
Article En | MEDLINE | ID: mdl-37427496

What is more effective to guide behavior: The desire to gain or the fear to lose? Electroencephalography (EEG) studies have yielded inconsistent answers. In a systematic exploration of the valence and magnitude parameters in monetary gain and loss processing, we used time-domain and time-frequency-domain analyses to uncover the underlying neural processes. A group of 24 participants performed a monetary incentive delay (MID) task in which cue-induced anticipation of a high or low magnitude of gain or loss was manipulated trial-wise. Behaviorally, the anticipation of both gain and loss expedited responses, with gain anticipation producing greater facilitation than loss anticipation. Analyses of cue-locked P2 and P3 components revealed the significant valence main effect and valence × magnitude interaction: amplitude differences between high and low incentive magnitudes were larger with gain vs. loss cues. However, the contingent negative variation component was sensitive to incentive magnitude but did not vary with incentive valence. In the feedback phase, the RewP component exhibited reversed patterns for gain and loss trials. Time-frequency analyses revealed a large increase in delta/theta-ERS oscillatory activity in high- vs. low-magnitude conditions and a large decrease of alpha-ERD oscillatory activity in gain vs. loss conditions in the anticipation stage. In the consumption stage, delta/theta-ERS turned out stronger for negative than positive feedback, especially in the gain condition. Overall, our study provides new evidence for the neural oscillatory features of monetary gain and loss processing in the MID task, suggesting that participants invested more attention under gain and high-magnitude conditions vs. loss and low-magnitude conditions.


Electroencephalography , Motivation , Humans , Anticipation, Psychological/physiology , Contingent Negative Variation , Reward
12.
Exp Brain Res ; 241(8): 2081-2096, 2023 Aug.
Article En | MEDLINE | ID: mdl-37460622

Despite having relatively accurate timing, subjective time can be influenced by various contexts, such as stimulus spacing and sample frequency. Several electroencephalographic (EEG) components have been associated with timing, including the contingent negative variation (CNV), offset P2, and late positive component of timing (LPCt). However, the specific role of these components in the contextual modulation of perceived time remains unclear. In this study, we conducted two temporal bisection experiments to investigate this issue. Participants had to judge whether a test duration was close to a short or long standard. Unbeknownst to them, we manipulated the stimulus spacing (Experiment 1) and sample frequency (Experiment 2) to create short and long contexts while maintaining consistent test ranges and standards across different sessions. The results revealed that the bisection threshold shifted towards the ensemble mean, and both CNV and LPCt were sensitive to context modulation. In the short context, the CNV exhibited an increased climbing rate compared to the long context, whereas the LPCt displayed reduced amplitude and latency. These findings suggest that the CNV represents an expectancy wave preceding a temporal decision process, while the LPCt reflects the decision-making process itself, with both components influenced by the temporal context.


Time Perception , Humans , Time Perception/physiology , Electroencephalography , Contingent Negative Variation/physiology , Time Factors
13.
Psychophysiology ; 60(12): e14375, 2023 12.
Article En | MEDLINE | ID: mdl-37417320

Singleton distractors may inadvertently capture attention, interfering with the task at hand. The underlying neural mechanisms of how we prevent or handle distractor interference remain elusive. Here, we varied the type of salient distractor introduced in a visual search task: the distractor could be defined in the same (shape) dimension as the target, a different (color) dimension, or a different (tactile) modality (intra-dimensional, cross-dimensional, and, respectively, cross-modal distractor, all matched for physical salience); and besides behavioral interference, we measured lateralized electrophysiological indicators of attentional selectivity (the N2pc, Ppc, PD , CCN/CCP, CDA, and cCDA). The results revealed the intra-dimensional distractor to produce the strongest reaction-time interference, associated with the smallest target-elicited N2pc. In contrast, the cross-dimensional and cross-modal distractors did not engender any significant interference, and the target-elicited N2pc was comparable to the condition in which the search display contained only the target singleton, thus ruling out early attentional capture. Moreover, the cross-modal distractor elicited a significant early CCN/CCP, but did not influence the target-elicited N2pc, suggesting that the tactile distractor is registered by the somatosensory system (rather than being proactively suppressed), without, however, engaging attention. Together, our findings indicate that, in contrast to distractors defined in the same dimension as the target, distractors singled out in a different dimension or modality can be effectively prevented to engage attention, consistent with dimension- or modality-weighting accounts of attentional priority computation.


Attention , Electroencephalography , Humans , Electroencephalography/methods , Attention/physiology , Reaction Time/physiology , Electrophysiological Phenomena , Visual Perception/physiology
14.
Psychophysiology ; 60(10): e14351, 2023 10.
Article En | MEDLINE | ID: mdl-37277926

A salient distractor interferes less with visual search if it appears at a location where it is likely to occur, referred to as distractor-location probability cueing. Conversely, if the current target appears at the same location as a distractor on the preceding trial, search is impeded. While these two location-specific "suppression" effects reflect long-term, statistically learnt and short-term, inter-trial adaptations of the system to distractors, it is unclear at what stage(s) of processing they arise. Here, we adopted the additional-singleton paradigm and examined lateralized event-related potentials (L-ERPs) and lateralized alpha (8-12 Hz) power to track the temporal dynamics of these effects. Behaviorally, we confirmed both effects: reaction times (RTs) interference was reduced for distractors at frequent versus rare (distractor) locations, and RTs were delayed for targets that appeared at previous distractor versus non-distractor locations. Electrophysiologically, the statistical-learning effect was not associated with lateralized alpha power during the pre-stimulus period. Rather, it was seen in an early N1pc referenced to the frequent distractor location (whether or not a distractor or a target occurred there), indicative of a learnt top-down prioritization of this location. This early top-down influence was systematically modulated by (competing) target- and distractor-generated bottom-up saliency signals in the display. In contrast, the inter-trial effect was reflected in an enhanced SPCN when the target was preceded by a distractor at its location. This suggests that establishing that an attentionally selected item is a task-relevant target, rather than an irrelevant distractor, is more demanding at a previously "rejected" distractor location.


Attention , Learning , Humans , Attention/physiology , Learning/physiology , Reaction Time/physiology , Evoked Potentials/physiology , Cues
15.
J Exp Psychol Hum Percept Perform ; 49(5): 709-724, 2023 May.
Article En | MEDLINE | ID: mdl-37261775

Static statistical regularities in the placement of targets and salient distractors within the search display can be learned and used to optimize attentional guidance. Whether statistical learning also extends to dynamic regularities governing the placement of targets and distractors on successive trials remains controversial. Here, we applied the same dynamic cross-trial regularity-one-step shift of the critical item in clockwise/counterclockwise direction-to either the target or a distractor. In two experiments, we found and replicated robust learning of the predicted target location: processing of the target at this location was facilitated, compared to random target placement. But we found little evidence of proactive suppression of the predictable distractor location-even in a close replication of Wang et al. (2021), who had reported a dynamic distractor suppression effect. Facilitation of the predictable target location was associated with explicit awareness of the dynamic regularity, whereas participants showed no awareness of the distractor regularity. We propose that this asymmetry arises because, owing to the target's central role in the task set, its location is explicitly encoded in working memory, enabling the learning of dynamic regularities. In contrast, the distractor is not explicitly encoded; so, statistical learning of dynamic distractor locations is more precarious. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Attention , Learning , Humans , Memory, Short-Term , Reaction Time
16.
J Cogn Neurosci ; 35(4): 543-570, 2023 04 01.
Article En | MEDLINE | ID: mdl-36735602

Redundant combination of target features from separable dimensions can expedite visual search. The dimension-weighting account explains these "redundancy gains" by assuming that the attention-guiding priority map integrates the feature-contrast signals generated by targets within the respective dimensions. The present study investigated whether this hierarchical architecture is sufficient to explain the gains accruing from redundant targets defined by features in different modalities, or whether an additional level of modality-specific priority coding is necessary, as postulated by the modality-weighting account (MWA). To address this, we had observers perform a visuo-tactile search task in which targets popped out by a visual feature (color or shape) or a tactile feature (vibro-tactile frequency) as well as any combination of these features. The RT gains turned out larger for visuo-tactile versus visual redundant targets, as predicted by the MWA. In addition, we analyzed two lateralized event-related EEG components: the posterior (PCN) and central (CCN) contralateral negativities, which are associated with visual and tactile attentional selection, respectively. The CCN proved to be a stable somatosensory component, unaffected by cross-modal redundancies. In contrast, the PCN was sensitive to cross-modal redundancies, evidenced by earlier onsets and higher amplitudes, which could not be explained by linear superposition of the earlier CCN onto the later PCN. Moreover, linear mixed-effect modeling of the PCN amplitude and timing parameters accounted for approximately 25% of the behavioral RT variance. Together, these behavioral and PCN effects support the hierarchy of priority-signal computation assumed by the MWA.


Attention , Touch , Humans
17.
Emotion ; 23(5): 1349-1359, 2023 Aug.
Article En | MEDLINE | ID: mdl-36095173

Reward expectation reduces the interference of task-irrelevant emotional distractors by improving cognitive control. The current study investigated the effects of reward expectation on proactive and reactive cognitive control of negative distractors. Reward expectation (incentive vs. nonincentive trials) was manipulated by a precue signaling the opportunity to gain an extra monetary reward for fast and accurate response on a given trial, followed by the trial display with the response-relevant target stimuli in the periphery and an irrelevant, negative, or neutral distractor in the center. The frequency of negative distractors (high vs. low) was manipulated to induce a proactive or reactive control mode (between-participants factor). Mutilation images and angry faces were used as negative distractors in Experiments 1 (1A and 1B) and 2, respectively. Results revealed performance to be generally facilitated by reward expectation, and impaired by negative (vs. neutral) distractors. Importantly, reward expectation rendered a reduction of negative-distractor interference when observers operated in reactive (vs. proactive) control mode. Moreover, the interaction between reward expectation and cognitive control strategy was modulated by the emotional strength of the negative distractors (mutilation images vs. angry faces). Thus, reward incentive leads to more effective filtering of negative (emotional) distractors when these occur rarely (reactive control) rather than frequently (proactive control), especially with emotionally strong negative distractors. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Attention , Motivation , Humans , Attention/physiology , Emotions/physiology , Anger , Reward , Reaction Time/physiology
18.
Neuroimage ; 263: 119662, 2022 11.
Article En | MEDLINE | ID: mdl-36198354

Cognitive complaints of attention/concentration problems are highly frequent in older adults with subjective cognitive decline (SCD). Functional connectivity in the cingulo-opercular network (CON-FC) supports cognitive control, tonic alertness, and visual processing speed. Thus, those complaints in SCD may reflect a decrease in CON-FC. Frontal white-matter tracts such as the forceps minor exhibit age- and SCD-related alterations and, therefore, might influence the CON-FC decrease in SCD. Here, we aimed to determine whether SCD predicts an impairment in CON-FC and whether neurite density in the forceps minor modulates that effect. To do so, we integrated cross-sectional and longitudinal analyses of multimodal data in a latent growth curve modeling approach. Sixty-nine healthy older adults (13 males; 68.33 ± 7.95 years old) underwent resting-state functional and diffusion-weighted magnetic resonance imaging, and the degree of SCD was assessed at baseline with the memory functioning questionnaire (greater score indicating more SCD). Forty-nine of the participants were further enrolled in two follow-ups, each about 18 months apart. Baseline SCD did not predict CON-FC after three years or its rate of change (p-values > 0.092). Notably, however, the forceps minor neurite density did modulate the relation between SCD and CON-FC (intercept; b = 0.21, 95% confidence interval, CI, [0.03, 0.39], p = 0.021), so that SCD predicted a greater CON-FC decrease in older adults with relatively lower neurite density in the forceps minor. The neurite density of the forceps minor, in turn, negatively correlated with age. These results suggest that CON-FC alterations in SCD are dependent upon the forceps minor neurite density. Accordingly, these results imply modifiable age-related factors that could help delay or mitigate both age and SCD-related effects on brain connectivity.


Cognitive Dysfunction , Neurites , Male , Humans , Aged , Middle Aged , Cross-Sectional Studies , Brain , Cognitive Dysfunction/diagnostic imaging , Surgical Instruments , Magnetic Resonance Imaging/methods
19.
J Exp Psychol Hum Percept Perform ; 48(11): 1250-1278, 2022 Nov.
Article En | MEDLINE | ID: mdl-36107665

Salient but task-irrelevant distractors interfere less with visual search when they appear in a display region where distractors have appeared more frequently in the past ("distractor-location probability cuing"). This effect could reflect the (re-)distribution of a global, limited attentional "inhibition resource." Accordingly, changing the frequency of distractor appearance in one display region should also affect the magnitude of interference generated by distractors in a different region. Alternatively, distractor-location learning may reflect a local response (e.g., "habituation") to distractors occurring at a particular location. In this case, the local distractor frequency in one display region should not affect distractor interference in a different region. To decide between these alternatives, we conducted three experiments in which participants searched for an orientation-defined target while ignoring a more salient orientation distractor that occurred more often in one versus another display region. Experiment 1 varied the ratio of distractors appearing in the frequent versus rare regions (60/40-90/10), with a fixed global distractor frequency. The results revealed the probability-cuing effect to increase with increasing probability ratio. In Experiments 2 and 3, one ("test") region was assigned the same local distractor frequency as in one of the conditions of Experiment 1, but a different frequency in the other region-dissociating local from global distractor frequency. Together, the three experiments showed that distractor interference in the test region was not significantly influenced by the frequency in the other region, consistent with purely local learning. We discuss the implications for theories of statistical distractor-location learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Attention , Learning , Humans , Attention/physiology , Learning/physiology , Inhibition, Psychological , Cues , Probability , Reaction Time/physiology
20.
Eur J Neurol ; 29(10): 3017-3027, 2022 10.
Article En | MEDLINE | ID: mdl-35699354

BACKGROUND AND PURPOSE: Fatigue and low sleep quality in multiple sclerosis (MS) are closely related symptoms. Here, the associations between the brain's functional connectivity (FC) and fatigue and low sleep quality were investigated to determine the degree of neural distinctiveness of these symptoms. METHOD: A hundred and four patients with relapsing-remitting MS (age 38.9 ± 10.2 years, 66 females) completed the Modified Fatigue Impact Scale and the Pittsburgh Sleep Quality Index and underwent resting-state functional magnetic resonance imaging. FC was analyzed using independent-component analysis in sensorimotor, default-mode, fronto-parietal and basal-ganglia networks. Multiple linear regression models allowed us to test the association between FC and fatigue and sleep quality whilst controlling for one another as well as for demographic, disease-related and imaging variables. RESULTS: Higher fatigue correlated with lower sleep quality (r = 0.54, p < 0.0001). Higher fatigue was associated with lower FC of the precentral gyrus in the sensorimotor network, the precuneus in the posterior default-mode network and the superior frontal gyrus in the left fronto-parietal network, independently of sleep quality. Lower sleep quality was associated with lower FC of the left intraparietal sulcus in the left fronto-parietal network, independently of fatigue. Specific associations were found between fatigue and the sensorimotor network's global FC and between low sleep quality and the left fronto-parietal network's global FC. CONCLUSION: Despite the high correlation between fatigue and low sleep quality in the clinical picture, our findings clearly indicate that, on the neural level, fatigue and low sleep quality in MS are associated with decreased FC in distinct functional brain networks.


Multiple Sclerosis , Adult , Brain/pathology , Brain Mapping/methods , Fatigue/complications , Female , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Sleep Quality
...