Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
3.
Kidney Int ; 103(6): 1093-1104, 2023 06.
Article in English | MEDLINE | ID: mdl-36921719

ABSTRACT

Transcriptional profiling studies have identified several protective genes upregulated in tubular epithelial cells during acute kidney injury (AKI). Identifying upstream transcriptional regulators could lead to the development of therapeutic strategies augmenting the repair processes. SOX9 is a transcription factor controlling cell-fate during embryonic development and adult tissue homeostasis in multiple organs including the kidneys. SOX9 expression is low in adult kidneys; however, stress conditions can trigger its transcriptional upregulation in tubular epithelial cells. SOX9 plays a protective role during the early phase of AKI and facilitates repair during the recovery phase. To identify the upstream transcriptional regulators that drive SOX9 upregulation in tubular epithelial cells, we used an unbiased transcription factor screening approach. Preliminary screening and validation studies show that zinc finger protein 24 (ZFP24) governs SOX9 upregulation in tubular epithelial cells. ZFP24, a Cys2-His2 (C2H2) zinc finger protein, is essential for oligodendrocyte maturation and myelination; however, its role in the kidneys or in SOX9 regulation remains unknown. Here, we found that tubular epithelial ZFP24 gene ablation exacerbated ischemia, rhabdomyolysis, and cisplatin-associated AKI. Importantly, ZFP24 gene deletion resulted in suppression of SOX9 upregulation in injured tubular epithelial cells. Chromatin immunoprecipitation and promoter luciferase assays confirmed that ZFP24 bound to a specific site in both murine and human SOX9 promoters. Importantly, CRISPR/Cas9-mediated mutation in the ZFP24 binding site in the SOX9 promoter in vivo led to suppression of SOX9 upregulation during AKI. Thus, our findings identify ZFP24 as a critical stress-responsive transcription factor protecting tubular epithelial cells through SOX9 upregulation.


Subject(s)
Acute Kidney Injury , SOX9 Transcription Factor , Animals , Humans , Mice , Acute Kidney Injury/prevention & control , Epithelial Cells/metabolism , Kidney/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Up-Regulation , Zinc Fingers
4.
Clin J Am Soc Nephrol ; 18(3): 402-410, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36344211

ABSTRACT

The major goals of the Kidney Precision Medicine Project (KPMPP) are to establish a molecular atlas of the kidney in health and disease and improve our understanding of the molecular drivers of CKD and AKI. In this clinical-pathologic-molecular correlation, we describe the case of a 38-year-old woman without any history of CKD who underwent a research kidney biopsy in the setting of AKI suspected to be due to nonsteroidal anti-inflammatory use after cesarean section delivery. The participant's histopathology was consistent with mild acute tubular injury, without significant interstitial fibrosis or tubular atrophy. This diagnosis was supported by analysis of the glomerular and tubulointerstitial proteomes. The proteomic interrogation revealed a molecular landscape that demonstrated differences in kidney prostaglandin synthesis that may be in response to nonsteroidal anti-inflammatory drugs and signs of intrarenal inflammation and fibrosis that were not evident by histopathology alone.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Pregnancy , Humans , Female , Adult , Proteome , Cesarean Section , Proteomics , Kidney/pathology , Acute Kidney Injury/pathology , Fibrosis , Renal Insufficiency, Chronic/pathology , Anti-Inflammatory Agents
5.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-38948707

ABSTRACT

Low nephron endowment at birth is a risk factor for chronic kidney disease. The prevalence of this condition is increasing due to higher survival rates of preterm infants and children with multi- organ birth defect syndromes that affect the kidney and urinary tract. We created a mouse model of congenital low nephron number due to deletion of Mta2 in nephron progenitor cells. Mta2 is a core component of the Nucleosome Remodeling and Deacetylase (NuRD) chromatin remodeling complex. These mice developed albuminuria at 4 weeks of age followed by focal segmental glomerulosclerosis (FSGS) at 8 weeks, with progressive kidney injury and fibrosis. Our studies reveal that altered mitochondrial metabolism in the post-natal period leads to accumulation of neutral lipids in glomeruli at 4 weeks of age followed by reduced mitochondrial oxygen consumption. We found that NuRD cooperated with Zbtb7a/7b to regulate a large number of metabolic genes required for fatty acid oxidation and oxidative phosphorylation. Analysis of human kidney tissue also supported a role for reduced mitochondrial lipid metabolism and ZBTB7A/7B in FSGS and CKD. We propose that an inability to meet the physiological and metabolic demands of post-natal somatic growth of the kidney promotes the transition to CKD in the setting of glomerular hypertrophy due to low nephron endowment.

6.
Kidney Int ; 102(4): 845-865, 2022 10.
Article in English | MEDLINE | ID: mdl-35788359

ABSTRACT

The immune pathways that define treatment response and non-response in lupus nephritis (LN) are unknown. To characterize these intra-kidney pathways, transcriptomic analysis was done on protocol kidney biopsies obtained at flare (initial biopsy (Bx1)) and after treatment (second biopsy (Bx2)) in 58 patients with LN. Glomeruli and tubulointerstitial compartments were isolated using laser microdissection. RNA was extracted and analyzed by nanostring technology with transcript expression from clinically complete responders, partial responders and non-responders compared at Bx1 and Bx2 and to the healthy controls. Top transcripts that differentiate clinically complete responders from non-responders were validated at the protein level by confocal microscopy and urine ELISA. At Bx1, cluster analysis determined that glomerular integrin, neutrophil, chemokines/cytokines and tubulointerstitial chemokines, T cell and leukocyte adhesion genes were able to differentiate non-responders from clinically complete responders. At Bx2, glomerular monocyte, extracellular matrix, and interferon, and tubulointerstitial interferon, complement, and T cell transcripts differentiated non-responders from clinically complete responders. Protein analysis identified several protein products of overexpressed glomerular and tubulointerstitial transcripts at LN flare, recapitulating top transcript findings. Urine complement component 5a and fibronectin-1 protein levels reflected complement and fibronectin expression at flare and after treatment. Thus, transcript analysis of serial LN kidney biopsies demonstrated how gene expression in the kidney changes with clinically successful and unsuccessful therapy. Hence, these insights into the molecular landscape of response and non-response may help align LN management with the pathogenesis of kidney injury.


Subject(s)
Lupus Nephritis , Biomarkers/urine , Biopsy , Complement C5a , Complement System Proteins , Fibronectins/genetics , Humans , Integrins , Interferons , Kidney/pathology , Lupus Nephritis/diagnosis , Lupus Nephritis/drug therapy , Lupus Nephritis/genetics , RNA
7.
Am J Physiol Renal Physiol ; 323(3): F272-F287, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35862649

ABSTRACT

Wilms' tumor interacting protein (Wtip) has been implicated in cell junction assembly and cell differentiation and interacts with proteins in the podocyte slit diaphragm, where it regulates podocyte phenotype. To define Wtip expression and function in the kidney, we created a Wtip-deleted mouse model using ß-galactosidase-neomycin (ß-geo) gene trap technology. Wtip gene trap mice were embryonic lethal, suggesting additional developmental roles outside kidney function. Using ß-geo heterozygous and normal mice, Wtip expression was identified in the developing kidneys, heart, and eyes. In the kidney, expression was restricted to podocytes, which appeared initially at the capillary loop stage coinciding with terminal podocyte differentiation. Heterozygous mice had an expected lifespan and showed no evidence of proteinuria or glomerular pathology. However, heterozygous mice were more susceptible to glomerular injury than wild-type littermates and developed more significant and prolonged proteinuria in response to lipopolysaccharide or adriamycin. In normal human kidneys, WTIP expression patterns were consistent with observations in mice and were lost in glomeruli concurrent with loss of synaptopodin expression in disease. Mechanistically, we identified the Rho guanine nucleotide exchange factor 12 (ARHGEF12) as a binding partner for WTIP. ARHGEF12 was expressed in human podocytes and formed high-affinity interactions through their LIM- and PDZ-binding domains. Our findings suggest that Wtip is essential for early murine embryonic development and maintaining normal glomerular filtration barrier function, potentially regulating slit diaphragm and foot process function through Rho effector proteins.NEW & NOTEWORTHY This study characterized dynamic expression patterns of Wilms' tumor interacting protein (Wtip) and demonstrates the novel role of Wtip in murine development and maintenance of the glomerular filtration barrier.


Subject(s)
Kidney Diseases , Podocytes , Wilms Tumor , Animals , Co-Repressor Proteins/metabolism , Cytoskeletal Proteins/metabolism , Female , Glomerular Filtration Barrier , Guanine Nucleotide Exchange Factors/metabolism , Humans , Kidney Diseases/metabolism , Kidney Glomerulus/metabolism , Mice , Podocytes/metabolism , Pregnancy , Proteinuria/genetics , Proteinuria/metabolism , Wilms Tumor/metabolism
9.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34625513

ABSTRACT

BACKGROUND: Immune checkpoint inhibitor-associated acute kidney injury (ICPi-AKI) has emerged as an important toxicity among patients with cancer. METHODS: We collected data on 429 patients with ICPi-AKI and 429 control patients who received ICPis contemporaneously but who did not develop ICPi-AKI from 30 sites in 10 countries. Multivariable logistic regression was used to identify predictors of ICPi-AKI and its recovery. A multivariable Cox model was used to estimate the effect of ICPi rechallenge versus no rechallenge on survival following ICPi-AKI. RESULTS: ICPi-AKI occurred at a median of 16 weeks (IQR 8-32) following ICPi initiation. Lower baseline estimated glomerular filtration rate, proton pump inhibitor (PPI) use, and extrarenal immune-related adverse events (irAEs) were each associated with a higher risk of ICPi-AKI. Acute tubulointerstitial nephritis was the most common lesion on kidney biopsy (125/151 biopsied patients [82.7%]). Renal recovery occurred in 276 patients (64.3%) at a median of 7 weeks (IQR 3-10) following ICPi-AKI. Treatment with corticosteroids within 14 days following ICPi-AKI diagnosis was associated with higher odds of renal recovery (adjusted OR 2.64; 95% CI 1.58 to 4.41). Among patients treated with corticosteroids, early initiation of corticosteroids (within 3 days of ICPi-AKI) was associated with a higher odds of renal recovery compared with later initiation (more than 3 days following ICPi-AKI) (adjusted OR 2.09; 95% CI 1.16 to 3.79). Of 121 patients rechallenged, 20 (16.5%) developed recurrent ICPi-AKI. There was no difference in survival among patients rechallenged versus those not rechallenged following ICPi-AKI. CONCLUSIONS: Patients who developed ICPi-AKI were more likely to have impaired renal function at baseline, use a PPI, and have extrarenal irAEs. Two-thirds of patients had renal recovery following ICPi-AKI. Treatment with corticosteroids was associated with improved renal recovery.


Subject(s)
Acute Kidney Injury/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Aged , Cohort Studies , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Male , Middle Aged , Risk Factors
11.
PLoS One ; 16(6): e0253197, 2021.
Article in English | MEDLINE | ID: mdl-34138902

ABSTRACT

The mechanism of pathogenesis associated with APOL1 polymorphisms and risk for non-diabetic chronic kidney disease (CKD) is not fully understood. Prior studies have minimized a causal role for the circulating APOL1 protein, thus efforts to understand kidney pathogenesis have focused on APOL1 expressed in renal cells. Of the kidney cells reported to express APOL1, the proximal tubule expression patterns are inconsistent in published reports, and whether APOL1 is synthesized by the proximal tubule or possibly APOL1 protein in the blood is filtered and reabsorbed by the proximal tubule remains unclear. Using both protein and mRNA in situ methods, the kidney expression pattern of APOL1 was examined in normal human and APOL1 bacterial artificial chromosome transgenic mice with and without proteinuria. APOL1 protein and mRNA was detected in podocytes and endothelial cells, but not in tubular epithelia. In the setting of proteinuria, plasma APOL1 protein did not appear to be filtered or reabsorbed by the proximal tubule. A side-by-side examination of commercial antibodies used in prior studies suggest the original reports of APOL1 in proximal tubules likely reflects antibody non-specificity. As such, APOL1 expression in podocytes and endothelia should remain the focus for mechanistic studies in the APOL1-mediated kidney diseases.


Subject(s)
Apolipoprotein L1/metabolism , Kidney Tubules, Proximal/metabolism , Proteinuria/metabolism , Alleles , Animals , Apolipoprotein L1/genetics , Endothelial Cells/metabolism , Humans , Kidney , Liver/metabolism , Mice , Mice, Transgenic , Podocytes/metabolism , Proteinuria/genetics
12.
Front Immunol ; 12: 621039, 2021.
Article in English | MEDLINE | ID: mdl-33659005

ABSTRACT

The mechanisms that promote local inflammatory injury during lupus nephritis (LN) flare are largely unknown. Understanding the key immune cells that drive intrarenal inflammation will advance our knowledge of disease pathogenesis and inform the development of new therapeutics for LN management. In this study, we analyzed kidney biopsies from patients with proliferative LN and identified a novel inflammatory dendritic cell (infDC) population that is highly expressed in the LN kidney, but minimally present in healthy human kidneys. During an agnostic evaluation of immune transcript expression in the kidneys of patients with proliferative LN, the most abundantly overexpressed transcript from isolated glomeruli was FCER1G, which encodes the Fc receptor gamma chain (FcRγ). To identify the cell types expressing FcRγ that infiltrate the kidney in LN, studies were done on kidney biopsies from patients with active LN using confocal immunofluorescence (IF) microscopy. This showed that FcRγ is abundantly present in the periglomerular (PG) region of the kidney and to a lesser extent in the tubulointerstitium (TI). Further investigation of the surface markers of these cells showed that they were FcRγ+, MHC II+, CD11c+, CD163+, CD5-, DC-SIGN+, CD64+, CD14+, CD16+, SIRPα+, CD206-, CD68-, CD123-, CD3-, and CD11b-, suggesting the cells were infDCs. Quantification of the infDCs showed an average 10-fold higher level of infDCs in the LN kidney compared to the healthy kidneys. Importantly, IF identified CD3+ T cells to be adjacent to these infDCs in the PG space of the LN kidney, whereas both cell types are minimally present in the healthy kidney. Thus, we have identified a previously undescribed DC in lupus kidneys that may interact with intrarenal T cells and play a role in the pathogenesis of kidney injury during LN flare.


Subject(s)
Dendritic Cells/immunology , Kidney/metabolism , Lupus Nephritis/immunology , T-Lymphocytes/metabolism , Adaptive Immunity , Autoimmunity , Biomarkers/metabolism , Cells, Cultured , Humans , Immunophenotyping , Inflammation , Kidney/pathology , Lymphocyte Activation , Receptors, Fc/genetics , Receptors, Fc/metabolism , T-Lymphocytes/pathology
13.
Kidney Int Rep ; 6(2): 484-492, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33615073

ABSTRACT

INTRODUCTION: Membranous nephropathy (MN) is a common cause of adult nephrotic syndrome that progresses to end-stage kidney disease in up to 40% of cases. It is an autoimmune disease characterized by glomerular subepithelial deposits containing IgG. In experimental MN, these deposits activate complement and cause kidney damage. The role of complement in human MN is less clearly defined. To address this, the current study focused on the role of complement in 2 independent primary (p) MN cohorts. METHODS: Glomeruli were isolated by laser capture microdissection and analyzed by mass spectrometry, focusing on complement proteins, from kidney biopsy specimens from a pMN cohort (n = 11) and from normal controls (n = 5). Immunohistological staining of kidney biopsy specimens for complement proteins was also done. In a second pMN cohort (n = 13), urine levels of Ba, C5a, and C5b-9 (membrane attack complex [MAC]) were measured. RESULTS: Mass spectrometry identified 8 complement pathway components (C1q, C3, C4, C5, C6, C7, C8, and C9) and 5 complement regulators (complement receptor type 1 [CR1], factor H [FH], FH-related protein 2 [FHR2], vitronectin, and clusterin). All complement levels were significantly higher in the MN groups than in the control group, except the level of CR1, which was lower. All pMN biopsy specimens showed negative or trace staining for C1q, positive staining for C3 and C4, and positive staining for at least 1 component of the lectin pathway. Urine Ba, C5a, and MAC were present in pMN, and their levels correlated (r Ba,C5a = 0.87, r Ba,MAC = 0.89, and r C5a,MAC = 0.97, P = .001 for each correlation). CONCLUSION: Elevated glomerular levels of C3, C4, and components of MAC (C5b-9) and absent or decreased levels of the complement regulator CR1, along with increased levels of complement activation products in the urine, support the involvement of complement in the pathogenesis of MN. These data raise the possibility that anti-complement therapies may be effective in some forms of MN.

14.
Kidney360 ; 2(1): 134-140, 2021 01 28.
Article in English | MEDLINE | ID: mdl-35368828

ABSTRACT

Common variants in the APOL1 gene are associated with an increased risk of nondiabetic kidney disease in individuals of African ancestry. Mechanisms by which APOL1 variants mediate kidney disease pathogenesis are not well understood. Amino acid changes resulting from the kidney disease-associated APOL1 variants alter the three-dimensional structure and conformational dynamics of the C-terminal α-helical domain of the protein, which can rationalize the functional consequences. Understanding the three-dimensional structure of the protein, with and without the risk variants, can provide insights into the pathogenesis of kidney diseases mediated by APOL1 variants.


Subject(s)
Apolipoprotein L1 , Kidney Diseases , Apolipoprotein L1/genetics , Black People , Humans , Kidney Diseases/genetics
15.
PLoS One ; 14(10): e0224408, 2019.
Article in English | MEDLINE | ID: mdl-31661509

ABSTRACT

African polymorphisms in the gene for Apolipoprotein L1 (APOL1) confer a survival advantage against lethal trypanosomiasis but also an increased risk for several chronic kidney diseases (CKD) including HIV-associated nephropathy (HIVAN). APOL1 is expressed in renal cells, however, the pathogenic events that lead to renal cell damage and kidney disease are not fully understood. The podocyte function of APOL1-G0 versus APOL1-G2 in the setting of a known disease stressor was assessed using transgenic mouse models. Transgene expression, survival, renal pathology and function, and podocyte density were assessed in an intercross of a mouse model of HIVAN (Tg26) with two mouse models that express either APOL1-G0 or APOL1-G2 in podocytes. Mice that expressed HIV genes developed heavy proteinuria and glomerulosclerosis, and had significant losses in podocyte numbers and reductions in podocyte densities. Mice that co-expressed APOL1-G0 and HIV had preserved podocyte numbers and densities, with fewer morphologic manifestations typical of HIVAN pathology. Podocyte losses and pathology in mice co-expressing APOL1-G2 and HIV were not significantly different from mice expressing only HIV. Podocyte hypertrophy, a known compensatory event to stress, was increased in the mice co-expressing HIV and APOL1-G0, but absent in the mice co-expressing HIV and APOL1-G2. Mortality and renal function tests were not significantly different between groups. APOL1-G0 expressed in podocytes may have a protective function against podocyte loss or injury when exposed to an environmental stressor. This was absent with APOL1-G2 expression, suggesting APOL1-G2 may have lost this protective function.


Subject(s)
AIDS-Associated Nephropathy/physiopathology , Apolipoprotein L1/metabolism , Animals , Apolipoprotein L1/genetics , Apolipoprotein L1/physiology , Apolipoproteins/genetics , Disease Models, Animal , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Humans , Kidney Glomerulus/pathology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Podocytes/metabolism , Podocytes/physiology , Polymorphism, Genetic/genetics , Renal Insufficiency, Chronic/pathology , Transcriptome/genetics
16.
J Am Soc Nephrol ; 29(3): 869-879, 2018 03.
Article in English | MEDLINE | ID: mdl-29180397

ABSTRACT

Coding variants in the APOL1 gene are associated with kidney diseases in African ancestral populations; yet, the underlying biologic mechanisms remain uncertain. Variant-dependent autophagic and cytotoxic cell death have been proposed as pathogenic pathways mediating kidney injury. To examine this possibility, we conditionally expressed APOL1-G0 (reference), -G1, and -G2 (variants) using a tetracycline-regulated system in HEK293 cells. Autophagy was monitored biochemically and cell death was measured using multiple assays. We measured intracellular Na+ and K+ content with atomic absorption spectroscopy and APOL1-dependent currents with whole-cell patch clamping. Neither reference nor variant APOL1s induced autophagy. At high expression levels, APOL1-G0, -G1, and -G2 inserted into the plasma membrane and formed pH-sensitive cation channels, causing collapse of cellular Na+ and K+ gradients, phosphorylation of p38 mitogen-activated protein kinase, and cell death, without variant-dependent differences. APOL1-G0 and -G2 exhibited similar channel properties in whole-cell patch clamp experiments. At low expression levels, neither reference nor variant APOL1s localized on the plasma membrane, Na+ and K+ gradients were maintained, and cells remained viable. Our results indicate that APOL1-mediated pore formation is critical for the trypanolytic activity of APOL1 and drives APOL1-mediated cytotoxicity in overexpression systems. The absence of cytotoxicity at physiologic expression levels suggests variant-dependent intracellular K+ loss and cytotoxicity does not drive kidney disease progression.


Subject(s)
Apolipoprotein L1/genetics , Autophagy/genetics , Genetic Variation , Kidney Diseases/genetics , Potassium/metabolism , Sodium/metabolism , Apolipoprotein L1/physiology , Calcium/metabolism , Cell Membrane/physiology , Gene Expression/drug effects , Genotype , HEK293 Cells , Humans , Ion Channels , Patch-Clamp Techniques , Phosphorylation , Tetracycline/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
17.
J Am Soc Nephrol ; 29(1): 81-91, 2018 01.
Article in English | MEDLINE | ID: mdl-28993506

ABSTRACT

Albuminuria and tubular atrophy are among the highest risks for CKD progression to ESRD. A parsimonious mechanism involves leakage of albumin-bound nonesterified fatty acids (NEFAs) across the damaged glomerular filtration barrier and subsequent reabsorption by the downstream proximal tubule, causing lipoapoptosis. We sought to identify the apical proximal tubule transporter that mediates NEFA uptake and cytotoxicity. We observed transporter-mediated uptake of fluorescently labeled NEFA in cultured proximal tubule cells and microperfused rat proximal tubules, with greater uptake from the apical surface than from the basolateral surface. Protein and mRNA expression analyses revealed that kidney proximal tubules express transmembrane fatty acid transporter-2 (FATP2), encoded by Slc27a2, but not the other candidate transporters CD36 and free fatty acid receptor 1. Kidney FATP2 localized exclusively to proximal tubule epithelial cells along the apical but not the basolateral membrane. Treatment of mice with lipidated albumin to induce proteinuria caused a decrease in the proportion of tubular epithelial cells and an increase in the proportion of interstitial space in kidneys from wild-type but not Slc27a2-/- mice. Ex vivo microperfusion and in vitro experiments with NEFA-bound albumin at concentrations that mimic apical proximal tubule exposure during glomerular injury revealed significantly reduced NEFA uptake and palmitate-induced apoptosis in microperfused Slc27a2-/- proximal tubules and Slc27a2-/- or FATP2 shRNA-treated proximal tubule cell lines compared with wild-type or scrambled oligonucleotide-treated cells, respectively. We conclude that FATP2 is a major apical proximal tubule NEFA transporter that regulates lipoapoptosis and may be an amenable target for the prevention of CKD progression.


Subject(s)
Apoptosis/genetics , Biological Transport/genetics , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Fatty Acids, Nonesterified/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Animals , Apoptosis/drug effects , Atrophy , Cells, Cultured , Epithelial Cells/physiology , Fatty Acids, Nonesterified/pharmacology , Female , Fibrosis , Kidney Tubules, Proximal/cytology , Male , Mice , Palmitic Acid/pharmacology , Proteinuria/chemically induced , Proteinuria/genetics , Proteinuria/pathology , Rats
18.
Semin Nephrol ; 37(6): 538-545, 2017 11.
Article in English | MEDLINE | ID: mdl-29110761

ABSTRACT

The association of variants in the APOL1 gene, which encodes apolipoprotein L1 (APOL1), with progressive nondiabetic kidney diseases in African Americans has prompted intense investigation into the function(s) of APOL1. APOL1 is an innate immune effector that protects human beings from infection by some trypanosomal parasites. We review the data characterizing APOL1 trypanolytic function, which has been a basis for studies of APOL1 function in mammalian cells. Subsequently, we discuss the studies that use animal models, mammalian cell culture models, and kidney biopsy tissue to discover the mechanisms of variant APOL1-associated kidney diseases.


Subject(s)
Apolipoprotein L1/genetics , Apolipoprotein L1/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Apolipoprotein L1/immunology , Haptoglobins/genetics , Haptoglobins/immunology , Humans , Immunity, Innate/genetics , Podocytes/metabolism , Signal Transduction/genetics , Trypanosomiasis, African/genetics , Trypanosomiasis, African/immunology
19.
JCI Insight ; 2(14)2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28724794

ABSTRACT

APOL1 variants in African populations mediate resistance to trypanosomal infection but increase risk for kidney diseases through unknown mechanisms. APOL1 is expressed in glomerular podocytes and does not vary with underlying kidney disease diagnoses or APOL1 genotypes, suggesting that the kidney disease-associated variants dysregulate its function rather than its localization or abundance. Structural homology searches identified vesicle-associated membrane protein 8 (VAMP8) as an APOL1 protein interactor. VAMP8 colocalizes with APOL1 in the podocyte, and the APOL1:VAMP8 interaction was confirmed biochemically and with surface plasmon resonance. APOL1 variants attenuate this interaction. Computational modeling of APOL1's 3-dimensional structure, followed by molecular dynamics simulations, revealed increased motion of the C-terminal domain of reference APOL1 compared with either variant, suggesting that the variants stabilize a closed or autoinhibited state that diminishes protein interactions with VAMP8. Changes in ellipticity with increasing urea concentrations, as assessed by circular dichroism spectroscopy, showed higher conformational stability of the C-terminal helix of the variants compared with the reference protein. These results suggest that reference APOL1 interacts with VAMP8-coated vesicles, a process attenuated by variant-induced reduction in local dynamics of the C-terminal. Disordered vesicular trafficking in the podocyte may cause injury and progressive chronic kidney diseases in susceptible African Americans subjects.

20.
J Am Soc Nephrol ; 27(12): 3600-3610, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27026370

ABSTRACT

APOL1 risk variants are associated with kidney disease in blacks, but the mechanisms of renal injury associated with APOL1 risk variants are unknown. Because APOL1 is unique to humans and some primates, we created transgenic (Tg) mice using the promoter of nephrin-encoding Nphs1 to express the APOL1 reference sequence (G0) or the G2 risk variant in podocytes, establishing Tg lines with a spectrum of APOL1 expression levels. Podocytes from Tg-G0 and Tg-G2 mice did not undergo necrosis, apoptosis, or autophagic cell death in vivo, even in lines with highly expressed transgenes. Further, Tg-G0 and Tg-G2 mice did not develop kidney pathology, proteinuria, or azotemia as of 300 days of age. However, by 200 days of age, Tg-G2 mice had significantly lower podocyte density than age-matched WT and Tg-G0 mice had, a difference that was not evident at weaning. Notably, a pregnancy-associated phenotype that encompassed eclampsia, preeclampsia, fetal/neonatal deaths, and small litter sizes occurred in some Tg-G0 mice and more severely in Tg-G2 mice. Similar to human placenta, placentas of Tg mice expressed APOL1. Overall, these results suggest podocyte depletion could predispose individuals with APOL1 risk genotypes to kidney disease in response to a second stressor, and add to other published evidence associating APOL1 expression with preeclampsia.


Subject(s)
Apolipoproteins/genetics , Kidney Diseases/genetics , Lipoproteins, HDL/genetics , Pre-Eclampsia/genetics , Animals , Apolipoprotein L1 , Disease Models, Animal , Female , Mice , Mice, Transgenic , Podocytes/physiology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...