Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Genes Chromosomes Cancer ; 62(1): 39-46, 2023 01.
Article in English | MEDLINE | ID: mdl-35716171

ABSTRACT

Ependymal tumors are the third most common brain tumor under 14 years old. Even though metastatic disease is a rare event, it affects mostly young children and carries an adverse prognosis. The factors associated with dissemination and the best treatment approach have not yet been established and there is limited published data on how to manage metastatic disease, especially in patients under 3 years of age. We provide a review of the literature on clinical characteristics and radiation-sparing treatments for metastatic ependymoma in children under 3 years of age treated. The majority (73%) of the identified cases were above 12 months old and had the PF as the primary site at diagnosis. Chemotherapy-based approaches, in different regimens, were used with radiation reserved for progression or relapse. The prognosis varied among the studies, with an average of 50%-58% overall survival. This study also describes the case of a 7-month-old boy with metastatic posterior fossa (PF) ependymoma, for whom we identified a novel SPECC1L-RAF1 gene fusion using a patient-centric comprehensive molecular profiling protocol. The patient was successfully treated with intensive induction chemotherapy followed by high-dose chemotherapy and autologous hematopoietic progenitor cell rescue (AuHSCR). Currently, the patient is in continuous remission 5 years after his diagnosis, without radiation therapy. The understanding of the available therapeutic approaches may assist physicians in their management of such patients. This report also opens the perspective of newly identified molecular alterations in metastatic ependymomas that might drive more chemo-sensitive tumors.


Subject(s)
Brain Neoplasms , Ependymoma , Hematopoietic Stem Cell Transplantation , Child , Male , Humans , Child, Preschool , Infant , Adolescent , Neoplasm Recurrence, Local , Ependymoma/drug therapy , Ependymoma/genetics , Ependymoma/radiotherapy , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/diagnosis
2.
J Mol Diagn ; 24(12): 1292-1306, 2022 12.
Article in English | MEDLINE | ID: mdl-36191838

ABSTRACT

Genomic profiling using short-read sequencing has utility in detecting disease-associated variation in both DNA and RNA. However, given the frequent occurrence of structural variation in cancer, molecular profiling using long-read sequencing improves the resolution of such events. For example, the Pacific Biosciences long-read RNA-sequencing (Iso-Seq) transcriptome protocol provides full-length isoform characterization, discernment of allelic phasing, and isoform discovery, and identifies expressed fusion partners. The Pacific Biosciences Fusion and Long Isoform Pipeline (PB_FLIP) incorporates a suite of RNA-sequencing software analysis tools and scripts to identify expressed fusion partners and isoforms. In addition, sequencing of a commercial reference (Spike-In RNA Variants) with known isoform complexity was performed and demonstrated high recall of the Iso-Seq and PB_FLIP workflow to benchmark our protocol and analysis performance. This study describes the utility of Iso-Seq and PB_FLIP analysis in improving deconvolution of complex structural variants and isoform detection within an institutional pediatric and adolescent/young adult translational cancer research cohort. The exemplar case studies demonstrate that Iso-Seq and PB_FLIP discover novel expressed fusion partners, resolve complex intragenic alterations, and discriminate between allele-specific expression profiles.


Subject(s)
Neoplasms , Transcriptome , Adolescent , Child , Humans , Alternative Splicing , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Protein Isoforms/genetics , RNA/genetics , Sequence Analysis, RNA , Young Adult
4.
Sci Adv ; 8(28): eabm1890, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857488

ABSTRACT

T cells redirected to cancer cells either via a chimeric antigen receptor (CAR-T) or a bispecific molecule have been breakthrough technologies; however, CAR-T cells require individualized manufacturing and bispecifics generally require continuous infusions. We created an off-the-shelf, single-dose solution for achieving prolonged systemic serum levels of protein immunotherapeutics via adeno-associated virus (AAV) gene transfer. We demonstrate proof of principle in a CD19+ lymphoma xenograft model using a single intravenous dose of AAV expressing a secreted version of blinatumomab, which could serve as a universal alternative for CD19 CAR-T cell therapy. In addition, we created an inducible version using an exon skipping strategy and achieved repeated, on-demand expression up to at least 36 weeks after AAV injection. Our system could be considered for short-term and/or repeated expression of other transgenes of interest for noncancer applications.


Subject(s)
Receptors, Chimeric Antigen , Antigens, CD19/genetics , Genetic Therapy , Humans , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics
5.
Epilepsia ; 63(8): 1981-1997, 2022 08.
Article in English | MEDLINE | ID: mdl-35687047

ABSTRACT

OBJECTIVE: Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. METHODS: We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. RESULTS: We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. SIGNIFICANCE: These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.


Subject(s)
Epilepsy , Malformations of Cortical Development , Brain/pathology , Child , Epilepsy/pathology , Humans , Malformations of Cortical Development/complications , Malformations of Cortical Development/genetics , Malformations of Cortical Development/metabolism , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
7.
Article in English | MEDLINE | ID: mdl-35149534

ABSTRACT

Closed spinal dysraphism (SD) is a type of neural tube defect originating during early embryonic development whereby the neural tissue of the spinal defect remains covered by skin, often coinciding with markers of cutaneous stigmata. It is hypothesized that these events are caused by multifactorial processes, including genetic and environmental causes. We present an infant with a unique congenital midline lesion associated with a closed SD. Through comprehensive molecular profiling of the intraspinal lesion and contiguous skin lesion, an internal tandem duplication (ITD) of the kinase domain of the fibroblast growth factor receptor 1 (FGFR1) gene was found. This ITD variant is somatic mosaic in nature as supported by a diminished variant allele frequency in the lesional tissue and by its absence in peripheral blood. FGFR1 ITD results in constitutive activation of the receptor tyrosine kinase to promote cell growth, differentiation, and survival through RAS/MAPK signaling. Identification of FGFR1 ITD outside of central nervous system tumors is exceedingly rare, and this report broadens the phenotypic spectrum of somatic mosaic FGFR1-related disease.


Subject(s)
Central Nervous System Neoplasms , Neural Tube Defects , Receptor, Fibroblast Growth Factor, Type 1 , Humans , Infant , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Phenotype , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction
8.
Diagn Microbiol Infect Dis ; 102(4): 115631, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35045382

ABSTRACT

One SARS-CoV-2-positive sample demonstrated impaired detection of the N1 target by RT-PCR using US CDC primer/probe sets. A 3 nucleotide deletion was discovered that overlaps the forward primer binding site. This finding underscores the importance of continued SARS-CoV-2 mutation surveillance and assessment of the impact on diagnostic test performance.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , DNA Primers/genetics , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
9.
Hum Mutat ; 43(2): 189-199, 2022 02.
Article in English | MEDLINE | ID: mdl-34859533

ABSTRACT

Synpolydactyly 1, also called syndactyly type II (SDTY2), is a genetic limb malformation characterized by polydactyly with syndactyly involving the webbing of the third and fourth fingers, and the fourth and fifth toes. It is caused by heterozygous alterations in HOXD13 with incomplete penetrance and phenotypic variability. In our study, a five-generation family with an SPD phenotype was enrolled in our Rare Disease Genomics Protocol. A comprehensive examination of three generations using Illumina short-read whole-genome sequencing (WGS) did not identify any causative variants. Subsequent WGS using Pacific Biosciences (PacBio) long-read HiFi Circular Consensus Sequencing (CCS) revealed a heterozygous 27-bp duplication in the polyalanine tract of HOXD13. Sanger sequencing of all available family members confirmed that the variant segregates with affected individuals. Reanalysis of an unrelated family with a similar SPD phenotype uncovered a 21-bp (7-alanine) duplication in the same region of HOXD13. Although ExpansionHunter identified these events in most individuals in a retrospective analysis, low sequence coverage due to high GC content in the HOXD13 polyalanine tract makes detection of these events challenging. Our findings highlight the value of long-read WGS in elucidating the molecular etiology of congenital limb malformation disorders.


Subject(s)
Homeodomain Proteins , Syndactyly , Transcription Factors , Homeodomain Proteins/genetics , Humans , Pedigree , Retrospective Studies , Syndactyly/genetics , Transcription Factors/genetics , Whole Genome Sequencing
10.
Acta Neuropathol Commun ; 9(1): 192, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34895332

ABSTRACT

Primary spinal cord tumors contribute to ≤ 10% of central nervous system tumors in individuals of pediatric or adolescent age. Among intramedullary tumors, spinal ependymomas make up ~ 30% of this rare tumor population. A twelve-year-old male presented with an intradural, extramedullary mass occupying the dorsal spinal canal from C6 through T2. Gross total resection and histopathology revealed a World Health Organization (WHO) grade 2 ependymoma. He recurred eleven months later with extension from C2 through T1-T2. Subtotal resection was achieved followed by focal proton beam irradiation and chemotherapy. Histopathology was consistent with WHO grade 3 ependymoma. Molecular profiling of the primary and recurrent tumors revealed a novel amplification of the MYC (8q24) gene, which was confirmed by fluorescence in situ hybridization studies. Although MYC amplification in spinal ependymoma is exceedingly rare, a newly described classification of spinal ependymoma harboring MYCN (2p24) amplification (SP-MYCN) has been defined by DNA methylation-array based profiling. These individuals typically present with a malignant progression and dismal outcomes, contrary to the universally excellent survival outcomes seen in other spinal ependymomas. DNA methylation array-based classification confidently classified this tumor as SP-MYCN ependymoma. Notably, among the cohort of 52 tumors comprising the SP-MYCN methylation class, none harbor MYC amplification, highlighting the rarity of this genomic amplification in spinal ependymoma. A literature review comparing our individual to reported SP-MYCN tumors (n = 26) revealed similarities in clinical, histopathologic, and molecular features. Thus, we provide evidence from a single case to support the inclusion of MYC amplified spinal ependymoma within the molecular subgroup of SP-MYCN.


Subject(s)
Ependymoma/diagnosis , N-Myc Proto-Oncogene Protein , Spinal Cord Neoplasms/diagnosis , Spinal Neoplasms/diagnosis , Child , Ependymoma/genetics , Ependymoma/pathology , Humans , Male , Spinal Cord Neoplasms/genetics , Spinal Cord Neoplasms/pathology , Spinal Neoplasms/genetics , Spinal Neoplasms/pathology
11.
BMC Genomics ; 22(1): 872, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34863095

ABSTRACT

BACKGROUND: Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to increase the accuracy of identifying fusions. RESULTS: Our Ensemble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely artifactual fusions occurring at high frequencies in our internal cohort, while a "known fusion list" prevents failure to report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following clinical confirmation and reporting in the patient's medical record, both known and novel fusions provided medically meaningful information. CONCLUSIONS: The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted therapies.


Subject(s)
Genome , Neoplasms , Child , Genomics , Humans , Neoplasms/genetics , Sequence Analysis, DNA , Sequence Analysis, RNA
12.
Article in English | MEDLINE | ID: mdl-34716204

ABSTRACT

The methodologic approach used in next-generation sequencing (NGS) affords a high depth of coverage in genomic analysis. Inherent in the nature of genomic testing, there exists potential for identifying genomic findings that are incidental or secondary to the indication for clinical testing, with the frequency dependent on the breadth of analysis and the tissue sample under study. The interpretation and management of clinically meaningful incidental genomic findings is a pressing issue particularly in the pediatric population. Our study describes a 16-mo-old male who presented with profound global delays, brain abnormality, progressive microcephaly, and growth deficiency, as well as metopic craniosynostosis. Clinical exome sequencing (ES) trio analysis revealed the presence of two variants in the proband. The first was a de novo variant in the PPP2R1A gene (c.773G > A, p.Arg258His), which is associated with autosomal dominant (AD) intellectual disability, accounting for the proband's clinical phenotype. The second was a recurrent hotspot variant in the CBL gene (c.1111T > C, p.Tyr371His), which was present at a variant allele fraction of 11%, consistent with somatic variation in the peripheral blood sample. Germline pathogenic variants in CBL are associated with AD Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia. Molecular analyses using a different tissue source, buccal epithelial cells, suggest that the CBL alteration may represent a clonal population of cells restricted to leukocytes. This report highlights the laboratory methodologic and interpretative processes and clinical considerations in the setting of acquired variation detected during clinical ES in a pediatric patient.


Subject(s)
Incidental Findings , Intellectual Disability , Child , Genomics , High-Throughput Nucleotide Sequencing , Humans , Male , Phenotype
13.
Genet Med ; 23(10): 1882-1888, 2021 10.
Article in English | MEDLINE | ID: mdl-34040190

ABSTRACT

PURPOSE: Somatic activating variants in the PI3K-AKT pathway cause vascular malformations with and without overgrowth. We previously reported an individual with capillary and lymphatic malformation harboring a pathogenic somatic variant in PIK3R1, which encodes three PI3K complex regulatory subunits. Here, we investigate PIK3R1 in a large cohort with vascular anomalies and identify an additional 16 individuals with somatic mosaic variants in PIK3R1. METHODS: Affected tissue from individuals with vascular lesions and overgrowth recruited from a multisite collaborative network was studied. Next-generation sequencing targeting coding regions of cell-signaling and cancer-associated genes was performed followed by assessment of variant pathogenicity. RESULTS: The phenotypic and variant spectrum associated with somatic variation in PIK3R1 is reported herein. Variants occurred in the inter-SH2 or N-terminal SH2 domains of all three PIK3R1 protein products. Phenotypic features overlapped those of the PIK3CA-related overgrowth spectrum (PROS). These overlapping features included mixed vascular malformations, sandal toe gap deformity with macrodactyly, lymphatic malformations, venous ectasias, and overgrowth of soft tissue or bone. CONCLUSION: Somatic PIK3R1 variants sharing attributes with cancer-associated variants cause complex vascular malformations and overgrowth. The PIK3R1-associated phenotypic spectrum overlaps with PROS. These data extend understanding of the diverse phenotypic spectrum attributable to genetic variation in the PI3K-AKT pathway.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/genetics , Limb Deformities, Congenital , Vascular Malformations , Humans , Mutation , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , Vascular Malformations/genetics
14.
Genes Chromosomes Cancer ; 60(9): 640-646, 2021 09.
Article in English | MEDLINE | ID: mdl-34041825

ABSTRACT

Gastroblastomas are rare tumors with a biphasic epithelioid/spindle cell morphology that typically present in early adulthood and have recurrent MALAT1-GLI1 fusions. We describe an adolescent patient with Wiskott-Aldrich syndrome who presented with a large submucosal gastric tumor with biphasic morphology. Despite histologic features consistent with gastroblastoma, a MALAT1-GLI1 fusion was not found in this patient's tumor; instead, comprehensive molecular profiling identified a novel EWSR1-CTBP1 fusion and no other significant genetic alterations. The tumor also overexpressed NOTCH and FGFR by RNA profiling. The novel fusion and expression profile suggest a role for epithelial-mesenchymal transition in this tumor, with potential implications for the pathogenesis of biphasic gastric tumors such as gastroblastoma.


Subject(s)
Alcohol Oxidoreductases/genetics , Carcinoma/genetics , DNA-Binding Proteins/genetics , Oncogene Proteins, Fusion/genetics , RNA-Binding Protein EWS/genetics , Stomach Neoplasms/genetics , Adolescent , Age of Onset , Carcinoma/pathology , Humans , Male , Stomach Neoplasms/pathology
15.
Brain ; 144(10): 2971-2978, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34048549

ABSTRACT

Phosphatase and tensin homologue (PTEN) regulates cell growth and survival through inhibition of the mammalian target of rapamycin (MTOR) signalling pathway. Germline genetic variation of PTEN is associated with autism, macrocephaly and PTEN hamartoma tumour syndromes. The effect of developmental PTEN somatic mutations on nervous system phenotypes is not well understood, although brain somatic mosaicism of MTOR pathway genes is an emerging cause of cortical dysplasia and epilepsy in the paediatric population. Here we report two somatic variants of PTEN affecting a single patient presenting with intractable epilepsy and hemimegalencephaly that varied in clinical severity throughout the left cerebral hemisphere. High-throughput sequencing analysis of affected brain tissue identified two somatic variants in PTEN. The first variant was present in multiple cell lineages throughout the entire hemisphere and associated with mild cerebral overgrowth. The second variant was restricted to posterior brain regions and affected the opposite PTEN allele, resulting in a segmental region of more severe malformation, and the only neurons in which it was found by single-nuclei RNA-sequencing had a unique disease-related expression profile. This study reveals brain mosaicism of PTEN as a disease mechanism of hemimegalencephaly and furthermore demonstrates the varying effects of single- or bi-allelic disruption of PTEN on cortical phenotypes.


Subject(s)
Cerebral Cortex/diagnostic imaging , Genetic Variation/genetics , Hemimegalencephaly/diagnostic imaging , Hemimegalencephaly/genetics , Mutation/genetics , PTEN Phosphohydrolase/genetics , Cerebral Cortex/surgery , Hemimegalencephaly/surgery , Humans , Infant , Male
16.
Genes Chromosomes Cancer ; 60(8): 577-585, 2021 08.
Article in English | MEDLINE | ID: mdl-33893698

ABSTRACT

Oncogenesis in PLAG1-rearranged tumors often results from PLAG1 transcription factor overexpression driven by promoter-swapping between constitutively expressed fusion partners. PLAG1-rearranged tumors demonstrate diverse morphologies. This study adds to this morphologic heterogeneity by introducing two tumors with PLAG1 rearrangements that display distinct histologic features. The first arose in the inguinal region of a 3-year-old, appeared well-circumscribed with a multinodular pattern, and harbored two fusions: ZFHX4-PLAG1 and CHCHD7-PLAG1. The second arose in the pelvic cavity of a 15-year-old girl, was extensively infiltrative and vascularized with an adipocytic component, and demonstrated a COL3A1-PLAG1 fusion. Both showed low-grade cytomorphology, scarce mitoses, no necrosis, and expression of CD34 and desmin. The ZFHX4-/CHCHD7-PLAG1-rearranged tumor showed no evidence of recurrence after 5 months. By contrast, the COL3A1-PLAG1-rearranged tumor quickly recurred following primary excision with positive margins; subsequent re-excision with adjuvant chemotherapy resulted in no evidence of recurrence after 2 years. While both tumors show overlap with benign and malignant fibroblastic and fibrovascular neoplasms, they also display divergent features. These cases highlight the importance of appropriate characterization in soft tissue tumors with unusual clinical and histologic characteristics.


Subject(s)
DNA-Binding Proteins/genetics , Oncogene Proteins, Fusion/genetics , Soft Tissue Neoplasms/genetics , Adolescent , Child, Preschool , Collagen Type III/genetics , Female , Homeodomain Proteins/genetics , Humans , Male , Proteins/genetics , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/surgery , Soft Tissue Neoplasms/therapy , Transcription Factors/genetics
17.
Acta Neuropathol Commun ; 9(1): 61, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33827698

ABSTRACT

Retinoblastoma is a childhood cancer of the retina involving germline or somatic alterations of the RB Transcriptional Corepressor 1 gene, RB1. Rare cases of sellar-suprasellar region retinoblastoma without evidence of ocular or pineal tumors have been described. A nine-month-old male presented with a sellar-suprasellar region mass. Histopathology showed an embryonal tumor with focal Flexner-Wintersteiner-like rosettes and loss of retinoblastoma protein (RB1) expression by immunohistochemistry. DNA array-based methylation profiling confidently classified the tumor as pineoblastoma group A/intracranial retinoblastoma. The patient was subsequently enrolled on an institutional translational cancer research protocol and underwent comprehensive molecular profiling, including paired tumor/normal exome and genome sequencing and RNA-sequencing of the tumor. Additionally, Pacific Biosciences (PacBio) Single Molecule Real Time (SMRT) sequencing was performed from comparator normal and disease-involved tissue to resolve complex structural variations. RNA-sequencing revealed multiple fusions clustered within 13q14.1-q21.3, including a novel in-frame fusion of RB1-SIAH3 predicted to prematurely truncate the RB1 protein. SMRT sequencing revealed a complex structural rearrangement spanning 13q14.11-q31.3, including two somatic structural variants within intron 17 of RB1. These events corresponded to the RB1-SIAH3 fusion and a novel RB1 rearrangement expected to correlate with the complete absence of RB1 protein expression. Comprehensive molecular analysis, including DNA array-based methylation profiling and sequencing-based methodologies, were critical for classification and understanding the complex mechanism of RB1 inactivation in this diagnostically challenging tumor.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Retinoblastoma Binding Proteins/genetics , Retinoblastoma/genetics , Retinoblastoma/pathology , Ubiquitin-Protein Ligases/genetics , Gene Rearrangement , Genes, Retinoblastoma/genetics , Humans , Infant , Male , Oncogene Proteins, Fusion
18.
PLoS Pathog ; 17(1): e1009222, 2021 01.
Article in English | MEDLINE | ID: mdl-33465168

ABSTRACT

Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor ß-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion , Bacterial Proteins/metabolism , Endocarditis, Bacterial/pathology , N-Acetylneuraminic Acid/metabolism , Streptococcus/metabolism , Adhesins, Bacterial/genetics , Animals , Bacterial Proteins/genetics , Endocarditis, Bacterial/metabolism , Endocarditis, Bacterial/microbiology , Male , Rabbits , Streptococcus/classification , Streptococcus/genetics , Streptococcus/isolation & purification
19.
Am J Surg Pathol ; 45(3): 329-340, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33074854

ABSTRACT

Meningiomas are a central nervous system tumor primarily afflicting adults, with <1% of cases diagnosed during childhood or adolescence. Somatic variation in NF2 may be found in ∼50% of meningiomas, with other genetic drivers (eg, SMO, AKT1, TRAF7) contributing to NF2 wild-type tumors. NF2 is an upstream negative regulator of YAP signaling and loss of the NF2 protein product, Merlin, results in YAP overexpression and target gene transcription. This mechanism of dysregulation is described in NF2-driven meningiomas, but further work is necessary to understand the NF2-independent mechanism of tumorigenesis. Amid our institutional patient-centric comprehensive molecular profiling study, we identified an individual with meningioma harboring a YAP1-FAM118B fusion, previously reported only in supratentorial ependymoma. The tumor histopathology was remarkable, characterized by prominent islands of calcifying fibrous nodules within an overall collagen-rich matrix. To gain insight into this finding, we subsequently evaluated the genetic landscape of 11 additional pediatric and adolescent/young adulthood meningioma patients within the Children's Brain Tumor Tissue Consortium. A second individual harboring a YAP1-FAM118B gene fusion was identified within this database. Transcriptomic profiling suggested that YAP1-fusion meningiomas are biologically distinct from NF2-driven meningiomas. Similar to other meningiomas, however, YAP1-fusion meningiomas demonstrated overexpression of EGFR and MET. DNA methylation profiling further distinguished YAP1-fusion meningiomas from those observed in ependymomas. In summary, we expand the genetic spectrum of somatic alteration associated with NF2 wild-type meningioma to include the YAP1-FAM118B fusion and provide support for aberrant signaling pathways potentially targetable by therapeutic intervention.


Subject(s)
Biomarkers, Tumor/genetics , Gene Fusion , Meningeal Neoplasms/genetics , Meningioma/genetics , Adolescent , Adult , Age of Onset , Child , DNA Methylation , Databases, Genetic , Female , Genetic Predisposition to Disease , Humans , Infant , Male , Meningeal Neoplasms/pathology , Meningeal Neoplasms/surgery , Meningioma/pathology , Meningioma/surgery , Phenotype , Transcriptome , Treatment Outcome , Young Adult
20.
Article in English | MEDLINE | ID: mdl-33028644

ABSTRACT

Infantile fibrosarcoma (IFS) is nearly universally driven by gene fusions involving the NTRK family. ETV6-NTRK3 fusions account for ∼85% of alterations; the remainder are attributed to NTRK-variant fusions. Rarely, other genomic aberrations have been described in association with tumors identified as IFS or IFS-like. We describe the utility of genomic characterization of an IFS-like tumor. We also describe the successful treatment combination of VAC (vincristine, actinomycin, cyclophosphamide) with tyrosine kinase inhibitor (TKI) maintenance in this entity. This patient presented at birth with a right facial mass, enlarging at 1 mo to 4.9 × 4.5 × 6.3 cm. Biopsy demonstrated hypercellular fascicles of spindle cells with patchy positivity for smooth muscle actin (SMA) and negativity for S100, desmin, myogenin, and MyoD1. Targeted RNA sequencing identified a novel RBPMS-MET fusion with confirmed absence of ETV6-NTRK3, and the patient was diagnosed with an IFS-like tumor. A positron emission tomography (PET) scan was negative for metastatic disease. VAC was given for a duration of 10 mo. Resection at 13 mo of age demonstrated positive margins. Cabozantinib, a MET-targeting TKI, was initiated. The patient tolerated cabozantinib well and has no evidence of disease at 24 mo of age. We describe a novel RBPMS-MET driver fusion in association with a locally aggressive IFS-like tumor. MET functions as an oncogene and, when associated with the RNA binding protein RBPMS, forms an in-frame fusion product that retains the MET kinase domain. This fusion is associated with aberrant cell signaling pathway expression and subsequent malignancy. We describe treatment with cabozantinib in a patient with an IFS-like neoplasm.


Subject(s)
Anilides/therapeutic use , Fibrosarcoma/drug therapy , Proto-Oncogene Proteins c-met/genetics , Pyridines/therapeutic use , RNA-Binding Proteins/genetics , Anilides/metabolism , Biomarkers, Tumor/genetics , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Gene Fusion/genetics , Humans , Infant , Oncogene Proteins, Fusion/genetics , Oncogenes/genetics , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-met/metabolism , Pyridines/metabolism , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...