Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177306

ABSTRACT

The objective of the study was to evaluate tibial cartilage thickness (TCT), T1ρ and T2 values within both loaded and baseline configurations in a cadaveric knee model using a 3D bone based tibial coordinate system. Ten intact cadaveric knees were mounted into an magnetic resonance imaging (MRI) compatible loading device. Morphologic and quantitative MRI (qMRI) images were acquired with the knee in a baseline configuration and after application of 50% body weight. The morphologic images were evaluated for cartilage degeneration using a modified Noyes scoring system. A 3D bone-based tibial coordinate system was utilized to evaluate regional changes of tibial T1ρ, T2, and cartilage thickness values among regions covered and uncovered by the meniscus. Inter-regional differences in medial and lateral MRI outcomes were found between loaded and baseline configurations. Cartilage regions covered by the meniscus demonstrated disparate qMRI and TCT results as compared to cartilage regions not covered by the meniscus. The regions covered by meniscus experienced a ~3.5%, ~0.5%, and ~5.5% reduction of T1ρ (p < 0.05, medial and lateral compartments), T2 and TCT, respectively, in both compartments while regions not covered by the meniscus experienced larger reductions of ~10%, ~2%, and ~10.5% reduction of T1ρ (p < 0.05, medial and lateral compartments), T2 and TCT (p < 0.05, lateral compartment only), respectively, in both compartments. T1ρ and T2 decreases following application of 50% body weight load were substantially larger in the tibial regions with modified Noyes grade 3 (n = 2) compared to either healthy regions (n = 85, p < 0.0.003) or regions with modified Noyes grade 2 (n = 13, p < 0.004). Interregional differences in MRI outcomes reflect variations in structure and function, and largely followed a pattern in cartilage regions that were covered or not covered by the meniscus. Results of the current study suggest that ΔT1ρ and ΔT2 values may be sensitive to superficial fissuring, more than baseline or loaded T1ρ or T2 values, or TCT alone, however future studies with additional specimens, with greater variability in OA grade distribution, may further emphasize the current findings.

2.
Am J Sports Med ; 52(1): 109-115, 2024 01.
Article in English | MEDLINE | ID: mdl-38164678

ABSTRACT

BACKGROUND: Previous biomechanical studies evaluating medial meniscus posterior root tears (MMPRTs) are limited to low loads applied at specified loading angles, which cannot capture the effects of MMPRTs during the multidirectional forces and moments placed across the knee during physiological activities. PURPOSE: To quantify the effects of MMPRTs on knee joint contact mechanics during simulated gait. STUDY DESIGN: Controlled laboratory study. METHODS: Six human cadaveric knees were mounted on a robotic simulator programmed to apply dynamic forces, moments, and flexion angles to mimic level walking. Twelve cycles of multidirectional and dynamic standard gait input waveforms, normalized to specimen-specific body weight, were applied to the following conditions: (1) native, intact meniscus and (2) MMPRT. Peak contact stress, contact area, and the position of the weighted center of contact across the medial tibial plateau throughout the stance phase of gait were quantified using an electronic sensor placed across the medial tibial plateau. The difference between the intact state and MMPRT condition was calculated for each metric, and then the means and 95% CIs were computed. RESULTS: Despite heterogeneity in knee contact forces, MMPRTs significantly increased peak contact stress by a mean of 2 MPa across 20% to 37% of the simulated gait cycle and significantly decreased the contact area by a mean of 200 mm2 across 16% to 60% of the simulated gait cycle in comparison with the native state. There was no significant difference in the position of the weighted center of contact, in either the anterior-posterior or medial-lateral directions, after MMPRT. CONCLUSION: MMPRTs led to both a significant increase in peak contact stress and decreased contact areas for a portion of the simulated gait cycle ranging from 20% to 37% of gait, during which time the femur was flexed <15°. CLINICAL RELEVANCE: Contact mechanics are significantly affected after MMPRTs during early to midstance and at knee flexion angles lower than demonstrated previously. These data provide further biomechanical justification for treating MMPRTs.


Subject(s)
Menisci, Tibial , Tibial Meniscus Injuries , Humans , Biomechanical Phenomena , Cadaver , Knee Joint/physiology , Gait
3.
Arthrosc Sports Med Rehabil ; 6(1): 100831, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38169763

ABSTRACT

Purpose: To characterize the ability of the intact medial patellofemoral ligament (MPFL) and the adductor transfer and adductor sling MPFL reconstruction techniques to resist subluxation and dislocation in a cadaveric model. Methods: Nine fresh-frozen cadaveric knees were placed on a custom testing fixture with the femur fixed parallel to the floor, the tibia placed in 20° of flexion, and the patella attached to a load cell. The patella was displaced laterally, and subluxation load (in newtons), dislocation load (in newtons), maximum failure load (in newtons), patellar displacement at failure, and mode of failure were recorded. Testing was conducted with the MPFL intact and after the adductor sling and adductor transfer reconstruction techniques. Statistical analysis was completed using 1-way repeated-measures analysis of variance with the Holm-Sidák post hoc test. Results: The subluxation load was not significantly different between groups. The native MPFL dislocation load was significantly higher than the dislocation loads of both reconstruction techniques, but no significant difference between the dislocation loads of the 2 reconstruction techniques occurred. The native MPFL failure load was significantly higher than the failure loads of both reconstruction techniques. The adductor sling failure load was significantly higher than the adductor transfer failure load. The mode of failure varied across groups. The native MPFL failed by femoral avulsion, patellar avulsion, and midsubstance tear. The main mode of failure for adductor transfer was pullout, whereas failure for the adductor sling technique most often occurred at the sutures. Most of the native MPFLs and all adductor sling reconstructions failed after dislocation. The adductor transfer reconstructions were much more variable, with failures spanning from before subluxation through dislocation. Conclusions: Our cadaveric model showed that neither the adductor transfer technique nor the adductor sling technique restored failure load to that of the native condition. There was no significant difference in the subluxation or dislocation loads between the 2 MPFL reconstructions, but the adductor sling technique resulted in a higher load to failure. The adductor transfer technique frequently failed before subluxation or dislocation when compared with the adductor sling technique and the native MPFL. Clinical Relevance: The best technique for MPFL reconstruction in patients with open physes is a topic of debate. Given the long-term consequences of MPFL injury and potential for growth plate disturbance, it is important to study MPFL reconstruction techniques thoroughly, including in the laboratory setting.

4.
Arthrosc Sports Med Rehabil ; 6(1): 100824, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38169780

ABSTRACT

Purpose: To quantify the maximum load to fracture in patellae from which bone-patellar tendon-bone (BPTB) and bone-quadriceps tendon (BQT) autografts have been harvested for anterior cruciate ligament reconstruction in a cadaveric model. Methods: Forty-six fresh-frozen patellae were isolated and divided into the BPTB harvest and BQT harvest groups with matching based on donor age and sex. Computed tomography scans were obtained to calculate bone mineral density (BMD) and patellar height, width, and thickness. BPTB and BQT grafts were harvested from the inferior patella and superior patella, respectively, and then ramped to failure in a 3-point bend test configuration to simulate a postoperative fracture produced by a direct impact after a fall. The presence of fracture, fracture pattern, and maximum load to fracture were recorded. Donor demographic characteristics; patellar height, width, and thickness; and maximum load were compared by the Student t test. Pearson correlations were used to determine whether maximum load was affected by BMD or patellar morphology. The level of significance was set at P < .05. Results: Maximum load to fracture was not significantly different (P = .91) between the BPTB (5.0 ± 2.3 kN) and BQT (5.1 ± 2.6 kN) groups. Maximum load to fracture in the BPTB group did not correlate with BMD (P = .57) or patellar measurements (P = .57 for thickness, P = .43 for width, and P = .45 for height). Maximum load to fracture in the BQT group positively correlated with BMD and negatively correlated with patellar height. Maximum load to fracture in the BQT group did not correlate with patellar thickness or width. Fracture through the harvest site was observed in 87% of BPTB specimens and 78% of BQT specimens. Conclusions: The location of the BPTB or BQT autograft harvest site did not significantly affect patellar load to fracture in a cadaveric model. Clinical Relevance: It is important to understand patellar morphology and the effect of BPTB and BQT graft harvest-site locations on the biomechanical strength of the patella after anterior cruciate ligament reconstruction.

5.
JOR Spine ; 6(4): e1307, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38156058

ABSTRACT

Background: Tissue-engineered intervertebral disc (TE-IVD) constructs are an attractive therapy for treating degenerative disc disease and have previously been investigated in vivo in both large and small animal models. The mechanical environment of the spine is notably challenging, in part due to its complex anatomy, and implants may require additional mechanical support to avoid failure in the early stages of implantation. As such, the design of suitable support implants requires rigorous validation. Methods: We created a FE model to simulate the behavior of the IVD cages under compression specific to the anatomy of the porcine cervical spine, validated the FE model using an animal model, and predicted the effects of implant location and vertebral angle of the motion segment on implant behavior. Specifically, we tested anatomical positioning of the superior vertebra and placement of the implant. We analyzed corresponding stress and strain distributions. Results: Results demonstrated that the anatomical geometry of the porcine cervical spine led to concentrated stress and strain on the posterior side of the cage. This stress concentration was associated with the location of failure of the cages reported in vivo, despite superior mechanical properties of the implant. Furthermore, placement of the cage was found to have profound effects on migration, while the angle of the superior vertebra affected stress concentration of the cage. Conclusions: This model can be utilized both to inform surgical procedures and provide insight on future cage designs and can be adopted to models without the use of in vivo animal models.

SELECTION OF CITATIONS
SEARCH DETAIL