Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
2.
G3 (Bethesda) ; 14(4)2024 04 03.
Article En | MEDLINE | ID: mdl-38243613

Multienvironment genomic prediction was applied to tetraploid potato using 147 potato varieties, tested for 2 years, in 3 locations representative of 3 distinct regions in Europe. Different prediction scenarios were investigated to help breeders predict genotypic performance in the regions from one year to the next, for genotypes that were tested this year (scenario 1), as well as new genotypes (scenario 3). In scenario 2, we predicted new genotypes for any one of the 6 trials, using all the information that is available. The choice of prediction model required assessment of the variance-covariance matrix in a mixed model that takes into account heterogeneity of genetic variances and correlations. This was done for each analyzed trait (tuber weight, tuber length, and dry matter) where examples of both limited and higher degrees of heterogeneity was observed. This explains why dry matter did not need complex multienvironment modeling to combine environments and increase prediction ability, while prediction in tuber weight, improved only when models were flexible enough to capture the heterogeneous variances and covariances between environments. We also found that the prediction abilities in a target trial condition decreased, if trials with a low genetic correlation to the target were included when training the model. Genomic prediction in tetraploid potato can work once there is clarity about the prediction scenario, a suitable training set is created, and a multienvironment prediction model is chosen based on the patterns of G×E indicated by the genetic variances and covariances.


Solanum tuberosum , Solanum tuberosum/genetics , Tetraploidy , Phenotype , Genotype , Genomics
3.
Front Genet ; 14: 1049988, 2023.
Article En | MEDLINE | ID: mdl-36936433

Linkage mapping is an approach to order markers based on recombination events. Mapping algorithms cannot easily handle genotyping errors, which are common in high-throughput genotyping data. To solve this issue, strategies have been developed, aimed mostly at identifying and eliminating these errors. One such strategy is SMOOTH, an iterative algorithm to detect genotyping errors. Unlike other approaches, SMOOTH can also be used to impute the most probable alternative genotypes, but its application is limited to diploid species and to markers heterozygous in only one of the parents. In this study we adapted SMOOTH to expand its use to any marker type and to autopolyploids with the use of identity-by-descent probabilities, naming the updated algorithm Smooth Descent (SD). We applied SD to real and simulated data, showing that in the presence of genotyping errors this method produces better genetic maps in terms of marker order and map length. SD is particularly useful for error rates between 5% and 20% and when error rates are not homogeneous among markers or individuals. With a starting error rate of 10%, SD reduced it to ∼5% in diploids, ∼7% in tetraploids and ∼8.5% in hexaploids. Conversely, the correlation between true and estimated genetic maps increased by 0.03 in tetraploids and by 0.2 in hexaploids, while worsening slightly in diploids (∼0.0011). We also show that the combination of genotype curation and map re-estimation allowed us to obtain better genetic maps while correcting wrong genotypes. We have implemented this algorithm in the R package Smooth Descent.

4.
Plant Biotechnol J ; 21(2): 369-380, 2023 02.
Article En | MEDLINE | ID: mdl-36333116

Kiwifruit (Actinidia spp) is a woody, perennial and deciduous vine. In this genus, there are multiple ploidy levels but the main cultivated cultivars are polyploid. Despite the availability of many genomic resources in kiwifruit, SNP genotyping is still a challenge given these different levels of polyploidy. Recent advances in SNP array technologies have offered a high-throughput genotyping platform for genome-wide DNA polymorphisms. In this study, we developed a high-density SNP genotyping array to facilitate genetic studies and breeding applications in kiwifruit. SNP discovery was performed by genome-wide DNA sequencing of 40 kiwifruit genotypes. The identified SNPs were stringently filtered for sequence quality, predicted conversion performance and distribution over the available Actinidia chinensis genome. A total of 134 729 unique SNPs were put on the array. The array was evaluated by genotyping 400 kiwifruit individuals. We performed a multidimensional scaling analysis to assess the diversity of kiwifruit germplasm, showing that the array was effective to distinguish kiwifruit accessions. Using a tetraploid F1 population, we constructed an integrated linkage map covering 3060.9 cM across 29 linkage groups and performed QTL analysis for the sex locus that has been identified on Linkage Group 3 (LG3) in Actinidia arguta. Finally, our dataset presented evidence of tetrasomic inheritance with partial preferential pairing in A. arguta. In conclusion, we developed and evaluated a 135K SNP genotyping array for kiwifruit. It has the advantage of a comprehensive design that can be an effective tool in genetic studies and breeding applications in this high-value crop.


Actinidia , Genotype , Actinidia/genetics , Polymorphism, Single Nucleotide/genetics , Plant Breeding , Chromosome Mapping/methods , Polyploidy
5.
BMC Bioinformatics ; 23(1): 67, 2022 Feb 14.
Article En | MEDLINE | ID: mdl-35164669

Quantitative trait locus (QTL) analysis allows to identify regions responsible for a trait and to associate alleles with their effect on phenotypes. When using biallelic markers to find these QTL regions, two alleles per QTL are modelled. This assumption might be close to reality in specific biparental crosses but is unrealistic in situations where broader genetic diversity is studied. Diversity panels used in genome-wide association studies or multi-parental populations can easily harbour multiple QTL alleles at each locus, more so in the case of polyploids that carry more than two alleles per individual. In such situations a multiallelic model would be closer to reality, allowing for different genetic effects for each potential allele in the population. To obtain such multiallelic markers we propose the usage of haplotypes, concatenations of nearby SNPs. We developed "mpQTL" an R package that can perform a QTL analysis at any ploidy level under biallelic and multiallelic models, depending on the marker type given. We tested the effect of genetic diversity on the power and accuracy difference between bi-allelic and multiallelic models using a set of simulated multiparental autotetraploid, outbreeding populations. Multiallelic models had higher detection power and were more precise than biallelic, SNP-based models, particularly when genetic diversity was higher. This confirms that moving to multi-allelic QTL models can lead to improved detection and characterization of QTLs. KEY MESSAGE: QTL detection in populations with more than two functional QTL alleles (which is likely in multiparental and/or polyploid populations) is more powerful when using multiallelic models, rather than biallelic models.


Genome-Wide Association Study , Quantitative Trait Loci , Alleles , Chromosome Mapping , Humans , Models, Genetic , Phenotype , Polyploidy
6.
Mol Breed ; 42(12): 76, 2022 Dec.
Article En | MEDLINE | ID: mdl-37313326

Genome-wide association studies (GWAS) are a useful tool to unravel the genetic architecture of complex traits, but the results can be difficult to interpret. Population structure, genetic heterogeneity, and rare alleles easily result in false positive or false negative associations. This paper describes the analysis of a GWAS panel combined with three bi-parental mapping populations to validate GWAS results, using phenotypic data for steroidal glycoalkaloid (SGA) accumulation and the ratio (SGR) between the two major glycoalkaloids α-solanine and α-chaconine in potato tubers. SGAs are secondary metabolites in the Solanaceae family, functional as a defence against various pests and pathogens and in high quantities toxic for humans. With GWAS, we identified five quantitative trait loci (QTL) of which Sga1.1, Sgr8.1, and Sga11.1 were validated, but not Sga3.1 and Sgr7.1. In the bi-parental populations, Sga5.1 and Sga7.1 were mapped, but these were not identified with GWAS. The QTLs Sga1.1, Sga7.1, Sgr7.1, and Sgr8.1 co-localize with genes GAME9, GAME 6/GAME 11, SGT1, and SGT2, respectively. For other genes involved in SGA synthesis, no QTLs were identified. The results of this study illustrate a number of pitfalls in GWAS of which population structure seems the most important. We also show that introgression breeding for disease resistance has introduced new haplotypes to the gene pool involved in higher SGA levels in certain pedigrees. Finally, we show that high SGA levels remain unpredictable in potato but that α-solanine/α-chaconine ratio has a predictable outcome with specific SGT1 and SGT2 haplotypes. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01344-2.

7.
Front Plant Sci ; 12: 771075, 2021.
Article En | MEDLINE | ID: mdl-34899794

Training set construction is an important prerequisite to Genomic Prediction (GP), and while this has been studied in diploids, polyploids have not received the same attention. Polyploidy is a common feature in many crop plants, like for example banana and blueberry, but also potato which is the third most important crop in the world in terms of food consumption, after rice and wheat. The aim of this study was to investigate the impact of different training set construction methods using a publicly available diversity panel of tetraploid potatoes. Four methods of training set construction were compared: simple random sampling, stratified random sampling, genetic distance sampling and sampling based on the coefficient of determination (CDmean). For stratified random sampling, population structure analyses were carried out in order to define sub-populations, but since sub-populations accounted for only 16.6% of genetic variation, there were negligible differences between stratified and simple random sampling. For genetic distance sampling, four genetic distance measures were compared and though they performed similarly, Euclidean distance was the most consistent. In the majority of cases the CDmean method was the best sampling method, and compared to simple random sampling gave improvements of 4-14% in cross-validation scenarios, and 2-8% in scenarios with an independent test set, while genetic distance sampling gave improvements of 5.5-10.5% and 0.4-4.5%. No interaction was found between sampling method and the statistical model for the traits analyzed.

8.
Bioinformatics ; 37(21): 3822-3829, 2021 11 05.
Article En | MEDLINE | ID: mdl-34358315

MOTIVATION: The investigation of quantitative trait loci (QTL) is an essential component in our understanding of how organisms vary phenotypically. However, many important crop species are polyploid (carrying more than two copies of each chromosome), requiring specialized tools for such analyses. Moreover, deciphering meiotic processes at higher ploidy levels is not straightforward, but is necessary to understand the reproductive dynamics of these species, or uncover potential barriers to their genetic improvement. RESULTS: Here, we present polyqtlR, a novel software tool to facilitate such analyses in (auto)polyploid crops. It performs QTL interval mapping in F1 populations of outcrossing polyploids of any ploidy level using identity-by-descent probabilities. The allelic composition of discovered QTL can be explored, enabling favourable alleles to be identified and tracked in the population. Visualization tools within the package facilitate this process, and options to include genetic co-factors and experimental factors are included. Detailed information on polyploid meiosis including prediction of multivalent pairing structures, detection of preferential chromosomal pairing and location of double reduction events can be performed. AVAILABILITYAND IMPLEMENTATION: polyqtlR is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polyqtlR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Polyploidy , Quantitative Trait Loci , Humans , Chromosome Mapping , Software , Likelihood Functions
9.
Front Plant Sci ; 12: 672417, 2021.
Article En | MEDLINE | ID: mdl-34434201

Use of genomic prediction (GP) in tetraploid is becoming more common. Therefore, we think it is the right time for a comparison of GP models for tetraploid potato. GP models were compared that contrasted shrinkage with variable selection, parametric vs. non-parametric models and different ways of accounting for non-additive genetic effects. As a complement to GP, association studies were carried out in an attempt to understand the differences in prediction accuracy. We compared our GP models on a data set consisting of 147 cultivars, representing worldwide diversity, with over 39 k GBS markers and measurements on four tuber traits collected in six trials at three locations during 2 years. GP accuracies ranged from 0.32 for tuber count to 0.77 for dry matter content. For all traits, differences between GP models that utilised shrinkage penalties and those that performed variable selection were negligible. This was surprising for dry matter, as only a few additive markers explained over 50% of phenotypic variation. Accuracy for tuber count increased from 0.35 to 0.41, when dominance was included in the model. This result is supported by Genome Wide Association Study (GWAS) that found additive and dominance effects accounted for 37% of phenotypic variation, while significant additive effects alone accounted for 14%. For tuber weight, the Reproducing Kernel Hilbert Space (RKHS) model gave a larger improvement in prediction accuracy than explicitly modelling epistatic effects. This is an indication that capturing the between locus epistatic effects of tuber weight can be done more effectively using the semi-parametric RKHS model. Our results show good opportunities for GP in 4x potato.

10.
Plants (Basel) ; 10(8)2021 Aug 20.
Article En | MEDLINE | ID: mdl-34451774

Ample nitrogen (N) is required for potato production, but its use efficiency is low. N supply strongly interacts with maturity type of the cultivar grown. We assessed whether variation among 189 cultivars grown with 75 or 185 kg available N/ha in 2 years would allow detecting quantitative trait loci (QTLs) for relevant traits. Using phenotypic data, we estimated various traits and carried out a genome-wide association study (GWAS) with kinship correction. Twenty-four traits and 10,747 markers based on single-nucleotide polymorphisms from a 20K Infinium array for 169 cultivars were combined in the analysis. N level affected most traits and their interrelations and influenced the detection of marker-trait associations; some were N-dependent, others were detected at both N levels. Ninety percent of the latter accumulated on a hotspot on Chromosome 5. Chromosomes 2 and 4 also contained regions with multiple associations. After correcting for maturity, the number of QTLs detected was much lower, especially of those common to both N levels; however, interestingly, the region on Chromosome 2 accumulated several QTLs. There is scope for marker-assisted selection for maturity, with the main purpose of improving characteristics within a narrow range of maturity types, in order to break the strong links between maturity type and traits like N use efficiency.

11.
Theor Appl Genet ; 134(8): 2443-2457, 2021 Aug.
Article En | MEDLINE | ID: mdl-34032878

KEY MESSAGE: In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.


Chromosome Mapping/methods , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Polyploidy , Quantitative Trait Loci , Solanum tuberosum/genetics , Computer Simulation , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Solanum tuberosum/growth & development
12.
Plant J ; 103(3): 1189-1204, 2020 08.
Article En | MEDLINE | ID: mdl-32369642

Tomato (Solanum lycopersicum L.) has become a popular model for genetic studies of fruit flavor in the last two decades. In this article we present a study of tomato fruit flavor, including an analysis of the genetic, metabolic and sensorial variation of a collection of contemporary commercial glasshouse tomato cultivars, followed by a validation of the associations found by quantitative trait locus (QTL) analysis of representative biparental segregating populations. This led to the identification of the major sensorial and chemical components determining fruit flavor variation and detection of the underlying QTLs. The high representation of QTL haplotypes in the breeders' germplasm suggests that there is great potential for applying these QTLs in current breeding programs aimed at improving tomato flavor. A QTL on chromosome 4 was found to affect the levels of the phenylalanine-derived volatiles (PHEVs) 2-phenylethanol, phenylacetaldehyde and 1-nitro-2-phenylethane. Fruits of near-isogenic lines contrasting for this locus and in the composition of PHEVs significantly differed in the perception of fruity and rose-hip-like aroma. The PHEV locus was fine mapped, which allowed for the identification of FLORAL4 as a candidate gene for PHEV regulation. Using a gene-editing-based (CRISPR-CAS9) reverse-genetics approach, FLORAL4 was demonstrated to be the key factor in this QTL affecting PHEV accumulation in tomato fruit.


Borates/metabolism , Fructose/analogs & derivatives , Genes, Plant/genetics , Quantitative Trait Loci/genetics , Solanum lycopersicum/genetics , Borates/standards , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Chromosome Mapping , Chromosomes, Plant/genetics , Food Quality , Fructose/metabolism , Fructose/standards , Gene Editing , Genes, Plant/physiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/standards , Phenylalanine/metabolism , Quantitative Trait, Heritable , Volatile Organic Compounds/metabolism
13.
Front Genet ; 10: 335, 2019.
Article En | MEDLINE | ID: mdl-31040862

DNA sequence reads contain information about the genomic variants located on a single chromosome. By extracting and extending this information using the overlaps between the reads, the haplotypes of an individual can be obtained. Using parent-offspring relationships in a population can considerably improve the quality of the haplotypes obtained from short reads, as pedigree information can be used to correct for spurious overlaps (due to sequencing errors) and insufficient overlaps (due to short read lengths, low genomic variation and shallow coverage). We developed a novel method, PopPoly, to estimate polyploid haplotypes in an F1-population from short sequence data by taking into consideration the transmission of the haplotypes from the parents to the offspring. In addition, this information is employed to improve genotype dosage estimation and to call missing genotypes in the population. Through simulations, we compare PopPoly to other haplotyping methods and show its better performance. We evaluate PopPoly by applying it to a tetraploid potato cross at nine genomic regions involved in tuber formation.

14.
G3 (Bethesda) ; 9(7): 2107-2122, 2019 07 09.
Article En | MEDLINE | ID: mdl-31036677

New genotyping technologies, offering the possibility of high genetic resolution at low cost, have helped fuel a surge in interest in the genetic analysis of polyploid species. Nevertheless, autopolyploid species present extra challenges not encountered in diploids and allopolyploids, such as polysomic inheritance or double reduction. Here we investigate the power and precision of quantitative trait locus (QTL) analysis in outcrossing autopolyploids, comparing the results of a model that assumes random bivalent chromosomal pairing during meiosis to one that also allows for multivalents and double reduction. Through a series of simulation studies we found that marginal gains in QTL detection power are achieved using the double reduction model when multivalent pairing occurs. However, when exploring the effect of variable genotypic information across parental homologs, we found that both QTL detection power and precision require high and uniform genotypic information contents. This effect far outweighed considerations regarding bivalent or multivalent pairing (and double reduction) during meiosis. We propose that autopolyploid QTL studies be accompanied by both marker coverage information and per-homolog genotypic information coefficients (GIC). Application of these methods to an autotetraploid potato (Solanum tuberosum L.) mapping population confirmed our ability to locate and dissect QTL in highly heterozygous outcrossing autotetraploid populations.


Models, Genetic , Polyploidy , Quantitative Trait Loci , Algorithms , Alleles , Chromosome Mapping , Genotype , Reproducibility of Results
15.
Euphytica ; 215(2): 14, 2019.
Article En | MEDLINE | ID: mdl-30872859

Protein content is a key quality trait for the potato starch industry. The objective of this study was to identify allele-specific quantitative trait loci (QTLs) for tuber protein content in cultivated potato (Solanum tuberosum L.) at the tetraploid level. We analysed 496 full-sib F1 clones in a 3-year field trial to dissect the complex genetic architecture of soluble tuber protein content. Genotypic data from a 60K single nucleotide polymorphism (SNP) array was used for SNP dosage scoring, constructing homologue specific linkage maps and assembly of a dense integrated chromosomal linkage map. From the integrated map, probabilistic multi-locus identity-by-descent (IBD) haplotypes (alleles) were estimated and used to detect associations between the IBD haplotypes and the phenotypic trait values. Moderate levels of trait heritability were estimated between 40 and 74% that correspond with previous studies. Our contemporary naive analysis identified potential additive QTLs on chromosomes 2, 3, 5 (top arm) and 9 across the years. Moreover, cofactor QTL analysis identified two masked QTLs on chromosomes 1 and 5 (lower arm). The QTLs on chromosomes 2, 5 (lower arm) and 9 are reported here for the first time. The QTLs that we identified on chromosomes 1, 3 and 5 (top arm) show overlap with previous studies for protein content in potato. Collectively the naive QTLs explained 12 to 17% of the phenotypic variance. The underlying alleles of the QTLs provided both positive and negative effects on the phenotype. Our work uncovers the complex genetic architecture of this trait and describes potential breeding strategies for improvement. As protein has emerged as a high-value component from industrial potato starch production, the dissection of the genetic architecture and subsequent improvement of this trait by breeding has great economic and environmental relevance.

16.
BMC Bioinformatics ; 20(1): 148, 2019 Mar 20.
Article En | MEDLINE | ID: mdl-30894135

BACKGROUND: Genetic studies in tetraploids are lagging behind in comparison with studies of diploids as the complex genetics of tetraploids require much more elaborated computational methodologies. Recent advancements in development of molecular techniques and computational tools facilitate new methods for automated, high-throughput genotype calling in tetraploid species. We report on the upgrade of the widely-used fitTetra software aiming to improve its accuracy, which to date is hampered by technical artefacts in the data. RESULTS: Our upgrade of the fitTetra package is designed for a more accurate modelling of complex collections of samples. The package fits a mixture model where some parameters of the model are estimated separately for each sub-collection. When a full-sib family is analyzed, we use parental genotypes to predict the expected segregation in terms of allele dosages in the offspring. More accurate modelling and use of parental data increases the accuracy of dosage calling. We tested the package on data obtained with an Affymetrix Axiom 60 k array and compared its performance with the original version and the recently published ClusterCall tool, showing that at least 20% more SNPs could be called with our updated. CONCLUSION: Our updated software package shows clearly improved performance in genotype calling accuracy. Estimation of mixing proportions of the underlying dosage distributions is separated for full-sib families (where mixture proportions can be estimated from the parental dosages and inheritance model) and unstructured populations (where they are based on the assumption of Hardy-Weinberg equilibrium). Additionally, as the distributions of signal ratios of the dosage classes can be assumed to be the same for all populations, including parental data for some subpopulations helps to improve fitting other populations as well. The R package fitTetra 2.0 is freely available under the GNU Public License as Additional file with this article.


Algorithms , Genetics, Population , Polymorphism, Single Nucleotide , Software , Tetraploidy , Alleles , Genotype , Humans , Oligonucleotide Array Sequence Analysis
17.
Metabolomics ; 15(1): 11, 2019 01 08.
Article En | MEDLINE | ID: mdl-30830456

INTRODUCTION: Untargeted metabolomics is a powerful tool to detect hundreds of metabolites within a given tissue and to compare the metabolite composition of samples in a comprehensive manner. However, with regard to pollen research such comprehensive metabolomics approaches are yet not well developed. To enable isolation of pollen that is tightly enclosed within the anthers of the flower, such as immature pollen, the current pollen isolation protocols require the use of a watery solution. These protocols raise a number of concerns for their suitability in metabolomics analyses, in view of possible metabolic activities in the pollen and contamination with anther metabolites. OBJECTIVES: We assessed the effect of different sample preparation procedures currently used for pollen isolation for their suitability to perform metabolomics of tomato pollen. METHODS: Pollen were isolated using different methods and the metabolic profiles were analysed by liquid chromatography-mass spectrometry (LC-MS). RESULTS: Our results demonstrated that pollen isolation in a watery solution led to (i) rehydration of the pollen grains, inducing marked metabolic changes in flavonoids, phenylpropanoids and amino acids and thus resulting in a metabolite profile that did not reflect the one of mature dry pollen, (ii) hydrolysis of sucrose into glucose and fructose during subsequent metabolite extraction, unless the isolated and rehydrated pollen were lyophilized prior to extraction, and (iii) contamination with anther-specific metabolites, such as alkaloids, thus compromising the metabolic purity of the pollen fraction. CONCLUSION: We conclude that the current practices used to isolate pollen are suboptimal for metabolomics analyses and provide recommendations on how to improve the pollen isolation protocol, in order to obtain the most reliable metabolic profile from pollen tissue.


Pollen/metabolism , Solanum lycopersicum/metabolism , Specimen Handling/methods , Alkaloids/metabolism , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolome , Metabolomics/methods
19.
Theor Appl Genet ; 131(10): 2055-2069, 2018 Oct.
Article En | MEDLINE | ID: mdl-29961102

KEY MESSAGE: Rose morphological traits such as prickles or petal number are influenced by a few key QTL which were detected across different growing environments-necessary for genomics-assisted selection in non-target environments. Rose, one of the world's most-loved and commercially important ornamental plants, is predominantly tetraploid, possessing four rather than two copies of each chromosome. This condition complicates genetic analysis, and so the majority of previous genetic studies in rose have been performed at the diploid level. However, there may be advantages to performing genetic analyses at the tetraploid level, not least because this is the ploidy level of most breeding germplasm. Here, we apply recently developed methods for quantitative trait loci (QTL) detection in a segregating tetraploid rose population (F1 = 151) to unravel the genetic control of a number of key morphological traits. These traits were measured both in the Netherlands and Kenya. Since ornamental plant breeding and selection are increasingly being performed at locations other than the production sites, environment-neutral QTL are required to maximise the effectiveness of breeding programmes. We detected a number of robust, multi-environment QTL for such traits as stem and petiole prickles, petal number and stem length that were localised on the recently developed high-density SNP linkage map for rose. Our work explores the complex genetic architecture of these important morphological traits at the tetraploid level, while helping to advance the methods for marker-trait exploration in polyploid species.


Flowers/anatomy & histology , Quantitative Trait Loci , Rosa/genetics , Tetraploidy , Chromosome Mapping , Flowers/genetics , Genetic Linkage , Phenotype , Plant Breeding
20.
Bioinformatics ; 34(22): 3864-3872, 2018 11 15.
Article En | MEDLINE | ID: mdl-29868858

Motivation: Knowledge of haplotypes, i.e. phased and ordered marker alleles on a chromosome, is essential to answer many questions in genetics and genomics. By generating short pieces of DNA sequence, high-throughput modern sequencing technologies make estimation of haplotypes possible for single individuals. In polyploids, however, haplotype estimation methods usually require deep coverage to achieve sufficient accuracy. This often renders sequencing-based approaches too costly to be applied to large populations needed in studies of Quantitative Trait Loci. Results: We propose a novel haplotype estimation method for polyploids, TriPoly, that combines sequencing data with Mendelian inheritance rules to infer haplotypes in parent-offspring trios. Using realistic simulations of both short and long-read sequencing data for banana (Musa acuminata) and potato (Solanum tuberosum) trios, we show that TriPoly yields more accurate progeny haplotypes at low coverages compared to existing methods that work on single individuals. We also apply TriPoly to phase Single Nucleotide Polymorphisms on chromosome 5 for a family of tetraploid potato with 2 parents and 37 offspring sequenced with an RNA capture approach. We show that TriPoly haplotype estimates differ from those of the other methods mainly in regions with imperfect sequencing or mapping difficulties, as it does not rely solely on sequence reads and aims to avoid phasings that are not likely to have been passed from the parents to the offspring. Availability and implementation: TriPoly has been implemented in Python 3.5.2 (also compatible with Python 2.7.3 and higher) and can be freely downloaded at https://github.com/EhsanMotazedi/TriPoly. Supplementary information: Supplementary data are available at Bioinformatics online.


Algorithms , Polyploidy , Alleles , Haplotypes , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
...