Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
bioRxiv ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38585916

Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of Chromatin Assembly Factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live-microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyperaccessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. As a result, histone variants usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, explaining how at later times the epigenome and cell fate can be altered.

2.
Cell Rep ; 42(10): 113300, 2023 10 31.
Article En | MEDLINE | ID: mdl-37858472

All vertebrate genomes encode for three large histone H2A variants that have an additional metabolite-binding globular macrodomain module, macroH2A. MacroH2A variants impact heterochromatin organization and transcription regulation and establish a barrier for cellular reprogramming. However, the mechanisms of how macroH2A is incorporated into chromatin and the identity of any chaperones required for histone deposition remain elusive. Here, we develop a split-GFP-based assay for chromatin incorporation and use it to conduct a genome-wide mutagenesis screen in haploid human cells to identify proteins that regulate macroH2A dynamics. We show that the histone chaperone ANP32B is a regulator of macroH2A deposition. ANP32B associates with macroH2A in cells and in vitro binds to histones with low nanomolar affinity. In vitro nucleosome assembly assays show that ANP32B stimulates deposition of macroH2A-H2B and not of H2A-H2B onto tetrasomes. In cells, depletion of ANP32B strongly affects global macroH2A chromatin incorporation, revealing ANP32B as a macroH2A histone chaperone.


Chromatin , Histones , Humans , Histones/metabolism , Histone Chaperones/metabolism , Gene Expression Regulation , Molecular Chaperones/metabolism , Nucleosomes , Nuclear Proteins/metabolism
3.
Mol Cell ; 82(22): 4199-4201, 2022 11 17.
Article En | MEDLINE | ID: mdl-36400007

Soman, A., Wong, S.Y., et al. find that telomeric DNA assembles into a new high-order chromatin structure resembling a columnar stack of nucleosomes with dynamic properties. This raises new questions on telomere biology mechanisms and chromatin evolution.


Chromatin , Nucleosomes , Chromatin/genetics , Nucleosomes/genetics , Telomere/genetics , DNA/genetics , DNA/chemistry
4.
Nat Commun ; 12(1): 4918, 2021 08 13.
Article En | MEDLINE | ID: mdl-34389719

Ribosomal RNA genes (rDNA) are highly unstable and susceptible to rearrangement due to their repetitive nature and active transcriptional status. Sequestration of rDNA in the nucleolus suppresses uncontrolled recombination. However, broken repeats must be first released to the nucleoplasm to allow repair by homologous recombination. Nucleolar release of broken rDNA repeats is conserved from yeast to humans, but the underlying molecular mechanisms are currently unknown. Here we show that DNA damage induces phosphorylation of the CLIP-cohibin complex, releasing membrane-tethered rDNA from the nucleolus in Saccharomyces cerevisiae. Downstream of phosphorylation, SUMOylation of CLIP-cohibin is recognized by Ufd1 via its SUMO-interacting motif, which targets the complex for disassembly through the Cdc48/p97 chaperone. Consistent with a conserved mechanism, UFD1L depletion in human cells impairs rDNA release. The dynamic and regulated assembly and disassembly of the rDNA-tethering complex is therefore a key determinant of nucleolar rDNA release and genome integrity.


Cell Nucleolus/genetics , DNA Repair , DNA, Ribosomal/genetics , Saccharomyces cerevisiae Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Valosin Containing Protein/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Nucleolus/metabolism , DNA Damage , DNA, Ribosomal/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Two-Hybrid System Techniques , Valosin Containing Protein/metabolism
5.
Front Cell Dev Biol ; 9: 663411, 2021.
Article En | MEDLINE | ID: mdl-33937266

Nucleotide excision repair (NER) is a pathway involved in the repair of a variety of potentially mutagenic lesions that distort the DNA double helix. The ubiquitin E3-ligase complex UV-DDB is required for the recognition and repair of UV-induced cyclobutane pyrimidine dimers (CPDs) lesions through NER. DDB2 directly binds CPDs and subsequently undergoes ubiquitination and proteasomal degradation. DDB2 must remain on damaged chromatin, however, for sufficient time to recruit and hand-off lesions to XPC, a factor essential in the assembly of downstream repair components. Here we show that the tumor suppressor USP44 directly deubiquitinates DDB2 to prevent its premature degradation and is selectively required for CPD repair. Cells lacking USP44 have impaired DDB2 accumulation on DNA lesions with subsequent defects in XPC retention. The physiological importance of this mechanism is evident in that mice lacking Usp44 are prone to tumors induced by NER lesions introduced by DMBA or UV light. These data reveal the requirement for highly regulated ubiquitin addition and removal in the recognition and repair of helix-distorting DNA damage and identify another mechanism by which USP44 protects genomic integrity and prevents tumors.

6.
J Cell Sci ; 133(9)2020 05 11.
Article En | MEDLINE | ID: mdl-32184266

Many chromatin remodeling and modifying proteins are involved in the DNA damage response, where they stimulate repair or induce DNA damage signaling. Interestingly, we identified that downregulation of the histone H1 (H1)-interacting protein SET results in increased resistance to a wide variety of DNA damaging agents. We found that this increased resistance does not result from alleviation of an inhibitory effect of SET on DNA repair but, rather, is the consequence of a suppressed apoptotic response to DNA damage. Furthermore, we provide evidence that the histone chaperone SET is responsible for the eviction of H1 from chromatin. Knockdown of H1 in SET-depleted cells resulted in re-sensitization of cells to DNA damage, suggesting that the increased DNA damage resistance in SET-depleted cells is the result of enhanced retention of H1 on chromatin. Finally, clonogenic survival assays showed that SET and p53 act epistatically in the attenuation of DNA damage-induced cell death. Taken together, our data indicate a role for SET in the DNA damage response as a regulator of cell survival following genotoxic stress.This article has an associated First Person interview with the first author of the paper.


Histone Chaperones , Histones , Cell Survival/genetics , Chromatin/genetics , DNA Damage/genetics , Histone Chaperones/genetics , Histones/genetics
7.
EMBO Rep ; 19(10)2018 10.
Article En | MEDLINE | ID: mdl-30177554

MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pluripotency. How they impart their influence on chromatin plasticity is not well understood. Here, we analyze how the different domains of macroH2A proteins contribute to chromatin structure and dynamics. By solving the crystal structure of the macrodomain of human macroH2A2 at 1.7 Å, we find that its putative binding pocket exhibits marked structural differences compared with the macroH2A1.1 isoform, rendering macroH2A2 unable to bind ADP-ribose. Quantitative binding assays show that this specificity is conserved among vertebrate macroH2A isoforms. We further find that macroH2A histones reduce the transient, PARP1-dependent chromatin relaxation that occurs in living cells upon DNA damage through two distinct mechanisms. First, macroH2A1.1 mediates an isoform-specific effect through its ability to suppress PARP1 activity. Second, the unstructured linker region exerts an additional repressive effect that is common to all macroH2A proteins. In the absence of DNA damage, the macroH2A linker is also sufficient for rescuing heterochromatin architecture in cells deficient for macroH2A.


Chromatin/genetics , Epigenesis, Genetic/genetics , Histones/chemistry , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/genetics , Chromatin/chemistry , Crystallography, X-Ray , DNA Damage/genetics , Heterochromatin/chemistry , Heterochromatin/genetics , Histones/genetics , Humans , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly (ADP-Ribose) Polymerase-1/genetics , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics
8.
EMBO Rep ; 19(10)2018 10.
Article En | MEDLINE | ID: mdl-30104204

Histone acetylation influences protein interactions and chromatin accessibility and plays an important role in the regulation of transcription, replication, and DNA repair. Conversely, DNA damage affects these crucial cellular processes and induces changes in histone acetylation. However, a comprehensive overview of the effects of DNA damage on the histone acetylation landscape is currently lacking. To quantify changes in histone acetylation, we developed an unbiased quantitative mass spectrometry analysis on affinity-purified acetylated histone peptides, generated by differential parallel proteolysis. We identify a large number of histone acetylation sites and observe an overall reduction of acetylated histone residues in response to DNA damage, indicative of a histone-wide loss of acetyl modifications. This decrease is mainly caused by DNA damage-induced replication stress coupled to specific proteasome-dependent loss of acetylated histones. Strikingly, this degradation of acetylated histones is independent of ubiquitylation but requires the PA200-proteasome activator, a complex that specifically targets acetylated histones for degradation. The uncovered replication stress-induced degradation of acetylated histones represents an important chromatin-modifying response to cope with replication stress.


Chromatin/genetics , DNA Damage/genetics , Nuclear Proteins/genetics , Proteasome Endopeptidase Complex/genetics , Acetylation , Amino Acid Sequence/genetics , DNA Repair/genetics , DNA Replication/genetics , Histones/genetics , Humans , Proteolysis , Ubiquitination/genetics
9.
Hum Mol Genet ; 26(23): 4689-4698, 2017 12 01.
Article En | MEDLINE | ID: mdl-28973399

The rare recessive developmental disorder Trichothiodystrophy (TTD) is characterized by brittle hair and nails. Patients also present a variable set of poorly explained additional clinical features, including ichthyosis, impaired intelligence, developmental delay and anemia. About half of TTD patients are photosensitive due to inherited defects in the DNA repair and transcription factor II H (TFIIH). The pathophysiological contributions of unrepaired DNA lesions and impaired transcription have not been dissected yet. Here, we functionally characterize the consequence of a homozygous missense mutation in the general transcription factor II E, subunit 2 (GTF2E2/TFIIEß) of two unrelated non-photosensitive TTD (NPS-TTD) families. We demonstrate that mutant TFIIEß strongly reduces the total amount of the entire TFIIE complex, with a remarkable temperature-sensitive transcription defect, which strikingly correlates with the phenotypic aggravation of key clinical symptoms after episodes of high fever. We performed induced pluripotent stem (iPS) cell reprogramming of patient fibroblasts followed by in vitro erythroid differentiation to translate the intriguing molecular defect to phenotypic expression in relevant tissue, to disclose the molecular basis for some specific TTD features. We observed a clear hematopoietic defect during late-stage differentiation associated with hemoglobin subunit imbalance. These new findings of a DNA repair-independent transcription defect and tissue-specific malfunctioning provide novel mechanistic insight into the etiology of TTD.


Transcription Factors, TFII/genetics , Trichothiodystrophy Syndromes/genetics , Cell Differentiation/genetics , Cellular Reprogramming/genetics , DNA Helicases/genetics , DNA Repair , Female , Humans , Induced Pluripotent Stem Cells/pathology , Male , Mutation , Mutation, Missense , Organ Specificity , Pedigree , Transcription Factors, TFII/metabolism , Transcription, Genetic , Trichothiodystrophy Syndromes/metabolism , Trichothiodystrophy Syndromes/pathology
10.
Nucleus ; 5(3): 203-10, 2014.
Article En | MEDLINE | ID: mdl-24809693

During transcription, RNA polymerase may encounter DNA lesions, which causes stalling of transcription. To overcome the RNA polymerase blocking lesions, the transcribed strand is repaired by a dedicated repair mechanism, called transcription coupled nucleotide excision repair (TC-NER). After repair is completed, it is essential that transcription restarts. So far, the regulation and exact molecular mechanism of this transcriptional restart upon genotoxic damage has remained elusive. Recently, three different chromatin remodeling factors, HIRA, FACT, and Dot1L, were identified to stimulate transcription restart after DNA damage. These factors either incorporate new histones or establish specific chromatin marks that will gear up the chromatin to subsequently promote transcription recovery. This adds a new layer to the current model of chromatin remodeling necessary for repair and indicates that this specific form of transcription, i.e., the transcriptional restart upon DNA damage, needs specific chromatin remodeling events.


Chromatin/genetics , DNA Damage/genetics , DNA/genetics , Transcription, Genetic/genetics , Animals , DNA Repair/genetics , Histones/genetics
11.
Biochim Biophys Acta ; 1809(10): 577-86, 2011 Oct.
Article En | MEDLINE | ID: mdl-21782046

Histones are highly basic, relatively small proteins that complex with DNA to form higher order structures that underlie chromosome topology. Of the four core histones H2A, H2B, H3 and H4, it is H3 that is most heavily modified at the post-translational level. The human genome harbours 16 annotated bona fide histone H3 genes which code for four H3 protein variants. In 2010, two novel histone H3.3 protein variants were reported, carrying over twenty amino acid substitutions. Nevertheless, they appear to be incorporated into chromatin. Interestingly, these new H3 genes are located on human chromosome 5 in a repetitive region that harbours an additional five H3 pseudogenes, but no other core histone ORFs. In addition, a human-specific novel putative histone H3.3 variant located at 12p11.21 was reported in 2011. These developments raised the question as to how many more human histone H3 ORFs there may be. Using homology searches, we detected 41 histone H3 pseudogenes in the current human genome assembly. The large majority are derived from the H3.3 gene H3F3A, and three of those may code for yet more histone H3.3 protein variants. We also identified one extra intact H3.2-type variant ORF in the vicinity of the canonical HIST2 gene cluster at chromosome 1p21.2. RNA polymerase II occupancy data revealed heterogeneity in H3 gene expression in human cell lines. None of the novel H3 genes were significantly occupied by RNA polymerase II in the data sets at hand, however. We discuss the implications of these recent developments.


Histones/metabolism , Amino Acid Sequence , Genetic Variation , Genome, Human , Humans , Models, Genetic , Molecular Sequence Data , Open Reading Frames , Phylogeny , Sequence Homology, Amino Acid
...