Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Sens ; 9(9): 4963-4973, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39206707

ABSTRACT

Molecularly imprinted polymers (MIPs) are synthetic receptors made by template-assisted synthesis. MIPs might be ideal receptors for sensing devices, given the possibility to custom-design selectivity and affinity toward a targeted analyte and their robustness and ability to withstand harsh conditions. However, the synthesis of MIP is an inherently random process that produces a statistical distribution of binding sites, characterized by a variety of affinities. This is verified both for bulk MIP materials and for MIP's thin layers. In the present work, we aimed at assessing the effects of inhomogeneous versus homogeneous imprinted binding sites on electrochemical sensing measurements, and the possible implications on the sensor's performance. In the example of an Electrochemical Impedance Spectroscopy (EIS) sensor for the 17ß-estradiol (E2) hormone, the scenario of inhomogeneous binding sites was studied by modifying electrodes with an E2-MIP polyaniline (PANI) thin layer, called the "Imprinted PANI layer". In contrast, the condition of discrete and uniform binding sites was epitomized by electrodes modified with a thin PANI layer purposedly doped with E2-MIP nanoparticles (nanoMIPs), which were referred to as "nanoMIP-doped PANI". The behaviors of the two EIS sensors were compared. Interestingly, the sensitivity of the nanoMIP-doped PANI was almost twice with respect to that of the imprinted PANI layer, strongly suggesting that the homogeneity of the binding sites has a fundamental role in the sensor's development. The nanoMIP-doped PANI sensor, which showed a response for E2 in the range 36.7 pM-36.7 nM and had a limit of detection of 2.86 pg/mL, was used to determine E2 in wastewater.


Subject(s)
Aniline Compounds , Dielectric Spectroscopy , Electrodes , Estradiol , Molecularly Imprinted Polymers , Aniline Compounds/chemistry , Estradiol/analysis , Estradiol/chemistry , Molecularly Imprinted Polymers/chemistry , Binding Sites , Electrochemical Techniques/methods , Molecular Imprinting
2.
Biosensors (Basel) ; 13(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37504143

ABSTRACT

Currently, optical sensors based on molecularly imprinted polymers (MIPs) have been attracting significant interest. MIP sensing relies on the combination of the MIP's selective capability, which is conveyed to the polymeric material by a template-assisted synthesis, with optical techniques that offer exquisite sensitivity. In this work, we devised an MIP nanoparticle optical sensor for the ultralow detection of serum albumin through time-resolved fluorescence spectroscopy. The Fluo-nanoMIPs (∅~120 nm) were synthetized using fluorescein-O-methacrylate (0.1×, 1×, 10× mol:mol versus template) as an organic fluorescent reporter. The ability of 0.1× and 1×Fluo-nanoMIPs to bind albumin (15 fM-150 nM) was confirmed by fluorescence intensity analyses and isothermal titration calorimetry. The apparent dissociation constant (Kapp) was 30 pM. Conversely, the 10× fluorophore content did not enable monitoring binding. Then, the time-resolved fluorescence spectroscopy of the nanosensors was studied. The 1×Fluo-nanoMIPs showed a decrease in fluorescence lifetime upon binding to albumin (100 fM-150 nM), Kapp = 28 pM, linear dynamic range 3.0-83.5 pM, limit of detection (LOD) 1.26 pM. Selectivity was confirmed testing 1×Fluo-nanoMIPs against competitor proteins. Finally, as a proof of concept, the nanosensors demonstrated detection of the albumin (1.5 nM) spiked in wine samples, suggesting a possible scaling up of the method in monitoring allergens in wines.


Subject(s)
Molecular Imprinting , Nanoparticles , Molecular Imprinting/methods , Spectrometry, Fluorescence , Nanoparticles/chemistry , Limit of Detection , Albumins
SELECTION OF CITATIONS
SEARCH DETAIL