Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Biomed Pharmacother ; 179: 117291, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39146766

ABSTRACT

Staphylococcus aureus is a bacterium responsible for resistance to multiple drugs and the efflux system is widely studied among the resistance mechanisms developed by this species. The present study evaluates the inhibition of the MepA efflux pump by thiadiazine-derived compounds. For this purpose, thiadiazine-derived compounds (IJ-14 to IJ-20) were tested against S. aureus K2068 strains. Microdilution tests were initially conducted to assess the Minimum Inhibitory Concentration (MIC) of the compounds and their efflux pump inhibition activity. In addition, fluorimetry tests were performed using BrEt emission and tests were conducted to inhibit the expression of the mepA gene. This involved comparing the bacterial gene expression with the antibiotic alone to the gene expression after combining compounds (IJ-17 and IJ-20) with the antibiotic. Furthermore, membrane permeability assessment tests and in silico molecular docking tests were performed. It was observed that the IJ17 and IJ20 compounds exhibited direct activity against the tested strain. The IJ17 compound produced significant results in the gene inhibition tests, which was also evidenced through the membrane permeability alteration test. These findings suggest that thiadiazine-derived compounds have promising effects against one of the main resistance mechanisms, with the IJ17 compound presenting observable mechanisms of action.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Cell Membrane Permeability , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcus aureus , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane Permeability/drug effects , Gene Expression Regulation, Bacterial/drug effects , Thiazines/pharmacology , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics
2.
An Acad Bras Cienc ; 96(3): e20230309, 2024.
Article in English | MEDLINE | ID: mdl-39166649

ABSTRACT

Brazil is renowned for its extensive plant biodiversity, with emphasis on Cymbopogon, C. citratus and C. nardus, with broad antimicrobial potential. Candidemias caused by Candida albicans are highly prevalent in immunosuppressed individuals and are associated with infections by biofilms on medical devices. The aim of this study was to evaluate the antimicrobial potential of essential oils C. citratus and C. nardus against C. albicans in planktonic and biofilm forms. Essential oils were obtained by hydrodistillation and chemical composition evaluated by GC-FID and GC-MS. The minimum inhibitory concentration was determined by the broth microdilution method and the synergy effect of essential oils and amphotericin B were evaluated by the checkerboard test. Biofilm activity was determined by the XTT assay. Cytotoxicity assays performed with VERO cells and molecular docking were performed to predict the effect of oil interaction on the SAP-5 enzyme site. The results showed activity of essential oils against planktonic cells and biofilm of C. albicans. Furthermore, the oils had a synergistic effect, and low cytotoxicity. Molecular docking showed interaction between Cadinene, Caryophyllen oxide, Germacrene D with SAP-5. The results indicate that Cymbopogon spp. studied are anti-Candida, with potential for further application in therapy against infections caused by C. albicans.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Cymbopogon , Microbial Sensitivity Tests , Molecular Docking Simulation , Oils, Volatile , Cymbopogon/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Biofilms/drug effects , Animals , Vero Cells , Chlorocebus aethiops , Gas Chromatography-Mass Spectrometry
3.
J Biomol Struct Dyn ; 42(1): 445-460, 2024.
Article in English | MEDLINE | ID: mdl-37038661

ABSTRACT

General anxiety disorders are among the most prevalent mental health problems worldwide. The emergence and development of anxiety disorders can be due to genetic (30-50%) or non-genetic (50-70%) factors. Despite medical progress, available pharmacotherapies are sometimes ineffective or can cause undesirable side effects. Thus, it becomes necessary to discover new safe and effective drugs against anxiety. This study evaluated the anxiolytic effect in adult zebrafish (Danio rerio) of a natural pyrroloformamide (PFD), N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)-N-methylformamide, isolated from a Streptomyces sp. bacterium strain recovered from the ascidian Eudistoma vannamei. The complete structure of PFD was determined by a detailed NMR analysis, including 1H-13C and 1H-15N-HBMC data. In addition, conformational and DFT computational studies also were performed. A group of fishes (n = 6) was treated orally with PFD (0.1, 0.5 and 1.0 mg/mL; 20 µL) and subjected to locomotor activity and light/dark tests, as well as, acute toxicity 96 h. The involvement of the GABAergic and serotonergic (5-HT) systems was investigated using flumazenil (a silent modulator of GABA receptor) and 5-HT1, 5-HT2A/2C and 5-HTR3A/3B receptors antagonists, known as pizotifen, granisetron and cyproheptadine, respectively. PFD was nontoxic, reduced locomotor activity and promoted the anxiolytic effect in zebrafish. Flumazenil did not inhibit the anxiolytic effect of the PFD via the GABAergic system. This effect was reduced by a pretreatment with pizotifen and granisetron, and was not reversed after treatment with cyproheptadine. Molecular docking and dynamics studies confirmed the interaction of PFD with the 5-HT receptor.Communicated by Ramaswamy H. Sarma.


Pyrroloformamide (PFD), isolated from the marine Streptomyces sp. associated ascidian Eudistoma vannamei, showed no toxicity in adult zebrafish but reduced its locomotor activity.The structural elucidation of PFD was determined by the analysis of 1D and 2D NMR and HRESIMS data.The density functional theory (DFT) study confirmed the existence of two conformers as determined by NMR spectra.The serotonergic system modulated the anxiolytic effect of PFD via the 5-HT receptor in adult zebrafish.Molecular docking and dynamics studies confirmed the interaction of PFD with the 5-HT receptor.


Subject(s)
Anti-Anxiety Agents , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Zebrafish , Serotonin , Flumazenil/pharmacology , Pizotyline , Molecular Docking Simulation , Granisetron , Cyproheptadine
4.
Future Microbiol ; 18: 1025-1039, 2023 11.
Article in English | MEDLINE | ID: mdl-37540066

ABSTRACT

Aim: Our study evaluated the activity of sertraline (SER) alone and associated with antifungal drugs in planktonic Candida spp. strains, and investigated its mechanism of action. Materials & methods: Broth microdilution method and minimum fungicidal concentration/MIC ratio were used to assess SER anticandidal activity, and the interaction with antifungals was determined by fractional inhibitory concentration index. The mechanism of action was investigated by flow cytometry and in silico tests. Results: SER inhibited Candida spp. strains at low concentrations by the fungicidal effect and showed no loss of effectiveness when combined. Its action seemed to be related to the membrane and cell wall biosynthesis inhibition. Conclusion: SER has activity against Candida spp. isolated and associated with antifungals, and acts by causing cell wall and membrane damage.


Subject(s)
Antifungal Agents , Candida , Antifungal Agents/pharmacology , Sertraline/pharmacology , Cell Wall , Microbial Sensitivity Tests
5.
Future Microbiol ; 18: 661-672, 2023 07.
Article in English | MEDLINE | ID: mdl-37540106

ABSTRACT

Objective: To evaluate the antifungal activity of hydralazine hydrochloride alone and in synergy with azoles against Candida spp. and the action mechanism. Methods: We used broth microdilution assays to determine the MIC, checkerboard assays to investigate synergism, and flow cytometry and molecular docking tests to ascertain action mechanism. Results: Hydralazine alone had antifungal activity in the range of 16-128 µg/ml and synergistic effect with itraconazole versus 100% of the fungal isolates, while there was synergy with fluconazole against 11.11% of the isolates. There was molecular interaction with the receptors exo-B(1,3)-glucanase and CYP51, causing reduced cell viability and DNA damage. Conclusion: Hydralazine is synergistic with itraconazole and triggers cell death of Candida spp. at low concentrations, demonstrating antifungal potential.


Subject(s)
Antifungal Agents , Triazoles , Antifungal Agents/pharmacology , Triazoles/pharmacology , Candida , Itraconazole/pharmacology , Plankton , Molecular Docking Simulation , Fluconazole/pharmacology , Hydralazine/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Fungal
6.
Future Microbiol ; 18: 649-660, 2023 07.
Article in English | MEDLINE | ID: mdl-37522164

ABSTRACT

Aim: To evaluate the antifungal activity of cisatracurium against Candida spp. resistant to fluconazole strains in planktonic and biofilm forms, in addition to determining its mechanism of action. Materials & methods: Antifungal activity and pharmacological interactions were determined using broth microdilution methods and the mechanism of action was evaluated by flow cytometry and molecular docking. Results: Cisatracurium presented antifungal activity against Candida spp. planktonic cells due to alterations of mitochondrial transmembrane potential leading to cellular apoptosis in addition to interacting with important targets related to cellular respiration, membrane and cell wall evidenced by molecular docking. Furthermore, the drug both prevented biofilm formation and impaired mature biofilms. Conclusion: Cisatracurium exhibits potential antifungal activity against Candida spp.


Subject(s)
Antifungal Agents , Fluconazole , Antifungal Agents/pharmacology , Fluconazole/pharmacology , Candida , Molecular Docking Simulation , Biofilms , Microbial Sensitivity Tests , Drug Resistance, Fungal
7.
Future Microbiol ; 18: 415-426, 2023 May.
Article in English | MEDLINE | ID: mdl-37213136

ABSTRACT

Aim: To evaluate the antibacterial activity of paroxetine alone and associated with oxacillin against isolates of methicillin-sensitive and -resistant Staphylococcus aureus. Materials & methods: The broth microdilution and checkerboard techniques were used, with investigation of possible mechanisms of action through flow cytometry, fluorescence microscopy and molecular docking, in addition to scanning electron microscopy for morphological analysis. Results: Paroxetine showed a MIC of 64 µg/ml and bactericidal activity, mostly additive interactions in combination with oxacillin, evidence of action on genetic material and membrane, morphological changes in microbial cells and influence on virulence factors. Conclusion: Paroxetine has antibacterial potential from the perspective of drug repositioning.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Paroxetine/pharmacology , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Oxacillin/pharmacology , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
8.
Math Biosci Eng ; 20(5): 9159-9178, 2023 03 14.
Article in English | MEDLINE | ID: mdl-37161238

ABSTRACT

About 6.5 million people are infected with Chagas disease (CD) globally, and WHO estimates that $ > million people worldwide suffer from ChHD. Sudden cardiac death (SCD) represents one of the leading causes of death worldwide and affects approximately 65% of ChHD patients at a rate of 24 per 1000 patient-years, much greater than the SCD rate in the general population. Its occurrence in the specific context of ChHD needs to be better exploited. This paper provides the first evidence supporting the use of machine learning (ML) methods within non-invasive tests: patients' clinical data and cardiac restitution metrics (CRM) features extracted from ECG-Holter recordings as an adjunct in the SCD risk assessment in ChHD. The feature selection (FS) flows evaluated 5 different groups of attributes formed from patients' clinical and physiological data to identify relevant attributes among 57 features reported by 315 patients at HUCFF-UFRJ. The FS flow with FS techniques (variance, ANOVA, and recursive feature elimination) and Naive Bayes (NB) model achieved the best classification performance with 90.63% recall (sensitivity) and 80.55% AUC. The initial feature set is reduced to a subset of 13 features (4 Classification; 1 Treatment; 1 CRM; and 7 Heart Tests). The proposed method represents an intelligent diagnostic support system that predicts the high risk of SCD in ChHD patients and highlights the clinical and CRM data that most strongly impact the final outcome.


Subject(s)
Death, Sudden, Cardiac , Machine Learning , Humans , Bayes Theorem , Death, Sudden, Cardiac/epidemiology , Risk Assessment , Electrocardiography
9.
J Mol Model ; 29(5): 165, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37117952

ABSTRACT

Chagas disease (CD) is a tropical disease caused by the parasite Trypanosoma cruzi, transmitted by the barber insect. Currently, there are approximately 7 million infected people in the world, and it is estimated that 70 million people could contract this disease. The anacardic acid (AA) showed effectiveness in in silico and in vitro tests. The antichagasic potential of five sulfonamide molecules, derived from anacardic acid, was evaluated from a molecular approach based on the density functional theory (DFT), molecular dynamics (MD), and molecular docking (docking) calculations. Methyl 2-methoxy-6- (8- (methylsulfonamide) octyl) benzoate (SA1); 2-methoxy-6- (8- (phenylsulfonamide) octyl) benzoate (SA2); methyl 2-methoxy-6- (8- (2methylphenyl sulfonamide) octyl) benzoate (SA3); methyl 2-methoxy-6- (8-(methylphenylsulfonamide)octyl)benzoate (SA4); methyl2-(8-(2,5-dimethylphenylsulfonamide)octyl)-6-methoxybenzoate (SA5) were the investigated molecules. The DFT calculations were performed using the B3LYP/6-311+G (d, p) level of theory. The global and local reactivity data showed that SA1 shows the highest molecular reactivity, while SA2 is the most stable derivative. In addition, the structures of investigated molecules were confirmed by the linear correlations higher than 0.98 displayed between the experimental and calculated spectroscopic data (IR and NMR). Molecular docking of the molecules showed a greater prominence for the SA1, SA2, and SA4 molecules in the results of distances of ligand-cruzain. In molecular dynamics, SA2 obtained better stability due to greater interactions with important amino acids of cruzain.


Subject(s)
Anacardic Acids , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Density Functional Theory , Anacardic Acids/pharmacology , Magnetic Resonance Spectroscopy , Sulfonamides
10.
Fundam Clin Pharmacol ; 37(1): 163-173, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36082507

ABSTRACT

Chalcones are present in a wide variety of plants, having in their structure two aromatic rings that are linked together by a chain composed of three carbon atoms with α, ß-unsaturated to carbonyl system. Bacteria have several drug resistance mechanisms, among them the efflux pump; this mechanism, when active, is able to expel different compounds from inside bacterial cells. Several efflux pumps have already been identified for Staphylococcus aureus bacteria, including MepA and NorA. Many chalcones have been isolated and identified with various activities, such as antimicrobial. In view of this, this article aimed to evaluate the antibiotic modifying effect of chalcone (E)-1-(2-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one against S. aureus carrier of NorA and MepA efflux pump. Regarding the antibiotic, there was a synergism when associated with ciprofloxacin in SA-K2068 strain, showing this chalcone as an alternative to reverse the resistance to this medicine. The physicochemical properties calculated were fundamental in the description of the predicted pharmacokinetic properties. Despite the mutagenic risk caused by the metabolic activation of nitrochalcone, it is possible to notice a pharmacological principle in a longer half-life for the performance of biological activities. The compound has a good bioavailability, as it is highly absorbed in the intestine and easily transported by plasma proteins, in addition to not presenting neurotoxic, hepatotoxic, and cardiotoxic damage.


Subject(s)
Chalcone , Chalcones , Staphylococcal Infections , Humans , Norfloxacin/pharmacology , Ciprofloxacin/pharmacology , Staphylococcus aureus , Ethidium/metabolism , Ethidium/pharmacology , Chalcone/pharmacology , Chalcone/metabolism , Chalcones/pharmacology , Multidrug Resistance-Associated Proteins , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
11.
Microb Pathog ; 170: 105697, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35926804

ABSTRACT

The prevalence of multidrug-resistant (MDR) bacteria and the limited efficacy of current available antibiotics cause every year approximately 700 000 deaths per year. This study aimed to evaluate the anti-inflammatory effect and antibacterial potential of the ibuprofen derivative Methyl 2-(-4-isobutylphenyl)propanoate (MET-IBU). The molecular structure of MET-IBU was confirmed by Nuclear Magnetic Resonance (NMR) and, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) spectroscopy. Our in vivo study using adult zebrafish model demonstrated that the ibuprofen derivative MET-IBU also possesses anti-inflammatory effect, and in vitro antibacterial activity assays showed that in the association of ampicillin, norfloxacin, and gentamicin with MET-IBU occurred reduction in the minimum inhibitory concentration (MIC) for MDR bacterial strains of Escherichia coli 06 and Staphylococcus aureus 10, indicating a potentiating in the growth inhibition of these pathogenic bacteria. Regarding the strain of Staphylococcus aureus K2068 (overexpressing mepA gene), a potentiation of ethidium bromide was found in the association with MET-IBU, indicating the action of this compound on the efflux pump mechanism present in this strains. This result corroborates the molecular docking study that indicated a high affinity of the MET-IBU with the MepA efflux pump. It was also noticed an antibiotic potentiating activity in the association MET-IBU with norfloxacin against strains of Staphylococcus aureus 1199B (overexpressing norA gene) when compared to the norfloxacin control. This enhanced antibiotic effect of MET-IBU is associated with a second resistance mechanism, which is due to the modification in the topoisomerase enzyme. These results bring attention to the ibuprofen derivative MET-IBU as possible candidate for the development of new options for the treatment of bacterial infections with protective anti-inflammatory action.


Subject(s)
Escherichia coli Infections , Staphylococcal Infections , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial , Escherichia coli/metabolism , Ibuprofen/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/genetics , Norfloxacin/chemistry , Norfloxacin/pharmacology , Propionates/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus , Zebrafish
12.
Future Microbiol ; 17: 607-620, 2022 05.
Article in English | MEDLINE | ID: mdl-35411812

ABSTRACT

Objective: The present study investigated the antifungal action of dexamethasone disodium phosphate (Dex). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol; M27-A3, checkerboard test and biofilm were evaluated with two isolates of Candida albicans, hyphal production test, molecular docking analysis and flow cytometry analysis. Result: Dex and fluconazole (FLC) together had a synergistic effect. Mature biofilm was reduced when treated with Dex alone or in combination. Dex and FLC promoted a decrease in the production of hyphae and changes in the level of mitochondrial depolarization, increased generation of reactive oxygen species, loss of membrane integrity, increased phosphatidylserine externalization and molecular docking; there was interaction with ALS3 and SAP5 targets. Conclusion: Dex showed antifungal activity against FLC-resistant C. albicans strains.


This study aimed to evaluate the antifungal action of dexamethasone against FLC-resistant C. albicans strains.


Subject(s)
Candida albicans , Fluconazole , Antifungal Agents/pharmacology , Biofilms , Dexamethasone/pharmacology , Drug Resistance, Fungal , Drug Synergism , Fluconazole/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation
13.
Fundam Clin Pharmacol ; 36(3): 486-493, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34989452

ABSTRACT

Globally, plant-derived medicines have been playing an increasing and relevant role in the treatment of several diseases, thus fostering the search for new bioactive substances. Among the various families of plants studied, those of the Combretum genus can be highlighted since they are widely used in folk medicine for the treatment of hepatitis, malaria, respiratory infections, cancer, skin hemorrhage, and anxiety. Phytochemical studies carried out on species of the Combretum genus demonstrated the presence of several classes of bioactive chemical compounds, including the triterpene 3ß,6ß,16ß-trihydroxilup-20(29)-ene (CLF-1). In this perspective, the objective of this review was to gather all pharmacological activities attributed to the CLF-1 triterpene, highlighting its importance for the pharmaceutical industry. The research was performed in scientific databases such as PubMed, SciELO, LILACS, SciFinder and Science Direct. The literature indicates a great pharmacological potential of CLF-1, evidencing its antioxidant, anti-inflammatory, antiviral, antiparasitic, antinociceptive, healing, and antibacterial action, antinociceptive and antitumor effect. Therefore, based on the different research above, it is plausible to consider CLF-1, obtained from different parts of the C. leprosum plant, as a molecule with biotechnological potential that may contribute to the development of new drugs and, consequently, in the treatment of various human pathologies.


Subject(s)
Combretum , Triterpenes , Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Combretum/chemistry , Ethnopharmacology , Humans , Plant Extracts/pharmacology , Triterpenes/pharmacology
14.
J Biomol Struct Dyn ; 40(23): 12785-12799, 2022.
Article in English | MEDLINE | ID: mdl-34528866

ABSTRACT

The use of the bacterial efflux pump mechanism to reduce the concentrations of antibiotics in the intracellular to the extracellular region is one of the main mechanisms by which bacteria acquire resistance to antibiotics. The present study aims to evaluate the antibacterial activity of the α,ß-amyrin mixture isolated from Protium heptaphyllum against the multidrug-resistant strains of Escherichia coli 06 and Staphylococcus aureus 10, and to verify the inhibition of the efflux resistance mechanisms against the strains of S. aureus 1199B and K2068, carrying the NorA and MepA efflux pumps, respectively. The α,ß-amyrin did not show clinically relevant direct bacterial activity. However, the α,ß-amyrin when associated with the gentamicin antibiotic presented synergistic effect against the multidrug-resistant bacterial strain of S. aureus 10. In strains with efflux pumps, α,ß-amyrin was able to inhibit the action of the efflux protein NorA against Ethidium Bromide. However, this inhibitory effect was not observed in the MepA efflux pump. In addition, when evaluating the effect of standard efflux pump inhibitors, clorptomazine and CCCP, α,ß-amyrin showed a decrease in MIC, demonstrating the presence of the efflux mechanism through synergism. Docking studies indicate that α, ß-amyrin have a higher affinity energy to MepA, and NorA than ciprofloxacin and norfloxacin. Also, α, ß-amyrin bind to the same region of the binding site as these antibiotics. It was concluded that the α, ß-amyrin has the potential to increase antibacterial activity with the association of antibiotics, together with the ability to be a strong candidate for an efflux pump inhibitor.Communicated by Ramaswamy H. Sarma.


Subject(s)
Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Norfloxacin/pharmacology , Norfloxacin/chemistry , Norfloxacin/metabolism , Bacterial Proteins/chemistry , Microbial Sensitivity Tests
15.
J Biomol Struct Dyn ; 40(22): 12302-12315, 2022.
Article in English | MEDLINE | ID: mdl-34436980

ABSTRACT

Chagas disease infects approximately seven million people worldwide. Benznidazole is effective only in the acute phase of the disease, with an average cure rate of 80% between acute and recent cases. Therefore, there is an urgent need to find new bioactive substances that can be effective against parasites without causing so many complications to the host. In this study, the triterpene 3ß-6ß-16ß-trihydroxilup-20 (29)-ene (CLF-1) was isolated from Combretum leprosum, and its molecular structure was determined by NMR and infrared spectroscopy. The CLF-1 was also evaluated in vitro and in silico as potential trypanocidal agent against epimastigote and trypomastigote forms of Trypanosoma cruzi (Y strain). The CLF-1 demonstrated good results highlighted by lower IC50 (76.0 ± 8.72 µM, 75.1 ± 11.0 µM, and 70.3 ± 45.4 µM) for epimastigotes at 24, 48 and 72 h, and LC50 (71.6 ± 11.6 µM) for trypomastigotes forms. The molecular docking study shows that the CLF-1 was able to interact with important TcGAPDH residues, suggesting that this natural compound may preferentially exert its effect by compromising the glycolytic pathway in T. cruzi. The ADMET study together with the MTT results indicated that the CLF-1 is well-absorbed in the intestine and has low toxicity. Thus, this work adds new evidence that CLF-1 can potentially be used as a candidate for the development of new options for the treatment of Chagas disease.Communicated by Ramaswamy H. Sarma.


Subject(s)
Chagas Disease , Combretum , Triterpenes , Trypanocidal Agents , Trypanosoma cruzi , Humans , Plant Extracts/chemistry , Combretum/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Molecular Docking Simulation , Chagas Disease/drug therapy , Trypanocidal Agents/pharmacology
16.
Microb Pathog ; 161(Pt B): 105286, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34793877

ABSTRACT

Bacterial resistance induced by efflux pumps is a frequent concern in clinical treatments involving multi-resistant bacteria. Staphylococcus aureus is a microorganism responsible for several types of infections and has several strains carrying efflux pumps, among them are the strain 1199B (NorA overexpresser), and the strain K2068 (MepA overexpresser). In this work, four chalcones derived from Croton anisodontus with modifications in the B ring in their structures were tested regarding their ability to inhibit NorA and MepA efflux pumps. The efflux pump inhibition mechanism was tested with the ethidium bromide substrate in the presence and absence of standard efflux pump inhibitors. The minimum inhibitory concentration values were also compared to those of strains that do not overexpress these efflux pumps. In order to gain some insights about the efflux pump mechanisms of these chalcones, two homology models were created (NorA and MepA) for a docking procedure. In addition, the ADME properties (absorption, distribution, metabolism and excretion) were also evaluated. The tested chalcones promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps. All four tested chalcones appear to bind to the binding sites of the efflux pump models in the same fashion as other chalcones with efflux pump inhibition capabilities. It was also verified that the chalcones 1-4 are well absorbed in the intestine, but with a decrease in their bioavailability, resulting in a low volume of distribution in the blood plasma, in addition to having a mild CNS activity. However, the chalcone 3 and 4 were not toxic due to metabolic activation. Whereas the chalcones 1 and 2 present a mutagenic risk, depending on the oral dose administered. The tested chalcones have not antibacterial activity; however, they are capable of inhibiting efflux pumps for the 1199B and K2068 strains. They promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps, as well as other associated mechanisms.


Subject(s)
Chalcone , Chalcones , Acetophenones/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Chalcones/pharmacology , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins , Staphylococcus aureus/metabolism
17.
Heliyon ; 7(1): e06079, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33553750

ABSTRACT

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, with approximately 6-7 million people infected worldwide, becoming a public health problem in tropical countries, thus generating an increasing demand for the development of more effective drugs, due to the low efficiency of the existing drugs. Aiming at the development of a new antichagasic pharmacological tool, the density functional theory was used to calculate the reactivity descriptors of amentoflavone, a biflavonoid with proven anti-trypanosomal activity in vitro, as well as to perform a study of interactions with the enzyme cruzain, an enzyme key in the evolutionary process of T-cruzi. Structural properties (in solvents with different values of dielectric constant), the infrared spectrum, the frontier orbitals, Fukui analysis, thermodynamic properties were the parameters calculated from DFT method with the monomeric structure of the apigenin used for comparison. Furthermore, molecular docking studies were performed to assess the potential use of this biflavonoid as a pharmacological antichagasic tool. The frontier orbitals (HOMO-LUMO) study to find the band gap of compound has been extended to calculate electron affinity, ionization energy, electronegativity electrophilicity index, chemical potential, global chemical hardness and global chemical softness to study the chemical behaviour of compound. The optimized structure was subjected to molecular Docking to characterize the interaction between amentoflavone and cruzain enzyme, a classic pharmacological target for substances with anti-gas activity, where significant interactions were observed with amino acid residues from each one's catalytic sites enzyme. These results suggest that amentoflavone has the potential to interfere with the enzymatic activity of cruzain, thus being an indicative of being a promising antichagasic agent.

18.
J Mol Model ; 26(12): 339, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33179132

ABSTRACT

The water influence on electrochemical behaviour of Ag+ ions in urea and choline chloride mixture was investigated by cyclic voltammetry technique, while the molecular insights about the investigated systems were obtained from molecular dynamic (MD) simulation. The water content was variated from 0 up to 10% (v/v). Cyclic voltammetry technique showed that the peak potential for Ag+/Ag redox couples shifted in direction to more positive potentials with the gradual increase of water content in solution, indicating that the addition of water electrocatalyses the kinetics of the reduction of Ag+ ions. The MD simulations demonstrated that water molecules do not interact strongly with Ag+ ions but induce a small reduction in the number of urea molecules around of the ion and that the water molecules adjust to free spaces in the mixture.

19.
Future Microbiol ; 15: 1543-1554, 2020 10.
Article in English | MEDLINE | ID: mdl-33215521

ABSTRACT

Aim: The purpose of this study was to assess the antifungal effect of ß-lapachone (ß-lap) on azole-resistant strains of Candida spp. in both planktonic and biofilm form. Materials & methods: The antifungal activity of ß-lap was evaluated by broth microdilution, flow cytometry and the comet assay. The cell viability of the biofilms was assessed using the MTT assay. Results: ß-lap showed antifungal activity against resistant strains of Candida spp. in planktonic form. In addition, ß-lap decreased the viability of mature biofilms and inhibited the formation of biofilms in vitro. Conclusion: ß-lap showed antifungal activity against Candida spp., suggesting that the compound can be utilized as an adjunct agent in the treatment of candidiasis.


Subject(s)
Antifungal Agents/pharmacology , Azoles/pharmacology , Biofilms/drug effects , Candida/drug effects , Drug Resistance, Fungal , Naphthoquinones/pharmacology , Candida/physiology , Candidiasis/drug therapy , Candidiasis/microbiology , Humans , Microbial Sensitivity Tests
20.
Appl Biochem Biotechnol ; 164(6): 741-54, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21340539

ABSTRACT

The lectin from seeds of Dioclea virgata (DvirL) was purified in a single step affinity chromatography, sequenced by tandem mass spectrometry and submitted to crystallization and biological experiments. DvirL has a molecular mass of 25,412 ± 2 Da and the chains ß and γ has 12,817 Da ± 2 and 12,612 Da ± 2, respectively. Primary sequence determination was assigned by tandem mass spectrometry and revealed a protein with 237 amino acids and 87% of identify with ConA. The protein crystals were obtained native and complexed with X-Man using vapor-diffusion method at a constant temperature of 293 K. A complete X-ray dataset was collected at 1.8 Å resolution. DvirL crystals were found to be orthorhombic, belonging to the space group I222, with a unit cell parameters a = 647.5 Å, b = 86.6 Å, c = 90.2 Å. Molecular replacement search found a solution with a correlation coefficient of 77.1% and an R(factor) of 44.6%. The present study also demonstrated that D. virgata lectin presents edematogenic and antinociceptive activities in rodents electing this protein as a candidate to structure/function analysis.


Subject(s)
Analgesics/chemistry , Dioclea/chemistry , Plant Lectins/chemistry , Amino Acid Sequence , Analgesics/isolation & purification , Analgesics/pharmacology , Animals , Crystallization , Edema/drug therapy , Humans , Male , Mass Spectrometry , Mice , Molecular Sequence Data , Peptide Mapping , Plant Lectins/isolation & purification , Plant Lectins/pharmacology , Seeds/chemistry , Sequence Alignment , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL