Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21262965

ABSTRACT

Critical illness in COVID-19 is caused by inflammatory lung injury, mediated by the host immune system. We and others have shown that host genetic variation influences the development of illness requiring critical care1 or hospitalisation2;3;4 following SARS-Co-V2 infection. The GenOMICC (Genetics of Mortality in Critical Care) study recruits critically-ill cases and compares their genomes with population controls in order to find underlying disease mechanisms. Here, we use whole genome sequencing and statistical fine mapping in 7,491 critically-ill cases compared with 48,400 population controls to discover and replicate 22 independent variants that significantly predispose to life-threatening COVID-19. We identify 15 new independent associations with critical COVID-19, including variants within genes involved in interferon signalling (IL10RB, PLSCR1), leucocyte differentiation (BCL11A), and blood type antigen secretor status (FUT2). Using transcriptome-wide association and colocalisation to infer the effect of gene expression on disease severity, we find evidence implicating expression of multiple genes, including reduced expression of a membrane flippase (ATP11A), and increased mucin expression (MUC1), in critical disease. We show that comparison between critically-ill cases and population controls is highly efficient for genetic association analysis and enables detection of therapeutically-relevant mechanisms of disease. Therapeutic predictions arising from these findings require testing in clinical trials.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20118943

ABSTRACT

BackgroundWe examined whether the greater severity of coronavirus disease 2019 (COVID-19) amongst men and non-White ethnicities is explained by cardiometabolic, socio-economic, or behavioural factors. MethodsWe studied 4,510 UK Biobank participants tested for COVID-19 (positive, n = 1,326). Multivariate logistic regression models including age, sex, and ethnicity were used to test whether addition of: 1)cardiometabolic factors (diabetes, hypertension, high cholesterol, prior myocardial infarction, smoking, BMI); 2)25(OH)-vitamin D; 3)poor diet; 4)Townsend deprivation score; 5)housing (home type, overcrowding); or 6)behavioural factors (sociability, risk taking) attenuated sex/ethnicity associations with COVID-19 status. ResultsThere was over-representation of men and non-White ethnicities in the COVID-19 positive group. Non-Whites had, on average, poorer cardiometabolic profile, lower 25(OH)-vitamin D, greater material deprivation, and were more likely to live in larger households and flats/apartments. Male sex, non-White ethnicity, higher BMI, Townsend deprivation score, and household overcrowding were independently associated with significantly greater odds of COVID-19. The pattern of association was consistent for men and women; cardiometabolic, socio-demographic and behavioural factors did not attenuate sex/ethnicity associations. ConclusionsSex and ethnicity differential pattern of COVID-19 is not adequately explained by variations in cardiometabolic factors, 25(OH)-vitamin D levels, or socio-economic factors. Investigation of alternative biological pathways and different genetic susceptibilities is warranted.

SELECTION OF CITATIONS
SEARCH DETAIL