Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893461

ABSTRACT

Metronidazole (MTZ) is the most common drug used against Trichomonas vaginalis (T. vaginalis) infections; however, treatment failures and high rates of recurrence of trichomoniasis have been reported, suggesting the presence of resistance in T. vaginalis to MTZ. Therefore, research into new therapeutic options against T. vaginalis infections has become increasingly urgent. This study investigated the trichomonacidal activity of a series of five imidazole carbamate compounds (AGR-1, AGR-2, AGR-3, AGR-4, and AGR-5) through in vitro susceptibility assays to determine the IC50 value of each compound. All five compounds demonstrated potent trichomonacidal activity, with IC50 values in the nanomolar range and AGR-2 being the most potent (IC50 400 nM). To gain insight into molecular events related to AGR-induced cell death in T. vaginalis, we analyzed the expression profiles of some metabolic genes in the trophozoites exposed to AGR compounds and MTZ. It was found that both AGR and MTZ compounds reduced the expression of the glycolytic genes (CK, PFK, TPI, and ENOL) and genes involved in metabolism (G6PD, TKT, TALDO, NADHOX, ACT, and TUB), suggesting that disturbing these key metabolic genes alters the survival of the T. vaginalis parasite and that they probably share a similar mechanism of action. Additionally, the compounds showed low cytotoxicity in the Caco-2 and HT29 cell lines, and the results of the ADMET analysis indicated that these compounds have pharmacokinetic properties similar to those of MTZ. The findings offer significant insights that can serve as a basis for future in vivo studies of the compounds as a potential new treatment against T. vaginalis.


Subject(s)
Carbamates , Imidazoles , Trichomonas vaginalis , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/genetics , Trichomonas vaginalis/growth & development , Imidazoles/pharmacology , Imidazoles/chemistry , Humans , Carbamates/pharmacology , Carbamates/chemistry , Metronidazole/pharmacology , Metronidazole/chemistry , Gene Expression Regulation/drug effects , Trophozoites/drug effects
2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674152

ABSTRACT

The parasite Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease worldwide. This infection often remains asymptomatic and is related to several health complications. The traditional treatment for trichomoniasis is the use of drugs of the 5-nitroimidazole family, such as metronidazole; however, scientific reports indicate an increasing number of drug-resistant strains. Benzimidazole derivatives could offer an alternative in the search for new anti-trichomonas drugs. In this sense, two attractive candidates are the compounds O2N-BZM7 and O2N-BZM9 (1H-benzimidazole derivatives), since, through in vitro tests, they have shown a higher trichomonacide activity. In this study, we determined the effect on the expression level of metabolic genes in T. vaginalis. The results show that genes involved in redox balance (NADHOX, G6PD::6PGL) are overexpressed, as well as the gene that participates in the first reaction of glycolysis (CK); on the other hand, structural genes such as ACT and TUB are decreased in expression in trophozoites treated with the compound O2N-BZM9, which would probably affect its morphology, motility and virulence. These results align with the trichomonacidal activity of the compounds, with benzimidazole O2N-BZM9 being the most potent, with an IC50 value of 4.8 µM. These results are promising for potential future therapeutic applications.


Subject(s)
Benzimidazoles , Trichomonas vaginalis , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/genetics , Trichomonas vaginalis/metabolism , Benzimidazoles/pharmacology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Gene Expression Regulation/drug effects , Humans , Antiprotozoal Agents/pharmacology , Antitrichomonal Agents/pharmacology
3.
Microorganisms ; 12(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257939

ABSTRACT

Several microaerophilic parasites such as Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum are major disease-causing organisms and are responsible for spreading infections worldwide. Despite significant progress made in understanding the metabolism and molecular biology of microaerophilic parasites, chemotherapeutic treatment to control it has seen limited progress. A current proposed strategy for drug discovery against parasitic diseases is the identification of essential key enzymes of metabolic pathways associated with the parasite's survival. In these organisms, glucose-6-phosphate dehydrogenase::6-phosphogluconolactonase (G6PD:: 6PGL), the first enzyme of the pentose phosphate pathway (PPP), is essential for its metabolism. Since G6PD:: 6PGL provides substrates for nucleotides synthesis and NADPH as a source of reducing equivalents, it could be considered an anti-parasite drug target. This review analyzes the anaerobic energy metabolism of G. lamblia, T. vaginalis, and P. falciparum, with a focus on glucose metabolism through the pentose phosphate pathway and the significance of the fused G6PD:: 6PGL enzyme as a therapeutic target in the search for new drugs.

4.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628871

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, affecting an estimated 500 million people worldwide, is a genetic disorder that causes human enzymopathies. Biochemical and genetic studies have identified several variants that produce different ranges of phenotypes; thus, depending on its severity, this enzymopathy is classified from the mildest (Class IV) to the most severe (Class I). Therefore, understanding the correlation between the mutation sites of G6PD and the resulting phenotype greatly enhances the current knowledge of enzymopathies' phenotypic and genotypic heterogeneity, which will assist both clinical diagnoses and personalized treatments for patients with G6PD deficiency. In this review, we analyzed and compared the structural and functional data from 21 characterized G6PD variants found in the Mexican population that we previously characterized. In order to contribute to the knowledge regarding the function and structure of the variants associated with G6PD deficiency, this review aimed to determine the molecular basis of G6PD and identify how these mutations could impact the structure, stability, and function of the enzyme and its relation with the clinical manifestations of this disease.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Glucosephosphate Dehydrogenase , Humans , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase Deficiency/genetics , Genotype , Mutation , Phenotype
5.
Int J Mol Sci ; 24(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37511272

ABSTRACT

Giardiasis, which is caused by Giardia lamblia infection, is a relevant cause of morbidity and mortality worldwide. Because no vaccines are currently available to treat giardiasis, chemotherapeutic drugs are the main options for controlling infection. Evidence has shown that the nitro drug nitazoxanide (NTZ) is a commonly prescribed treatment for giardiasis; however, the mechanisms underlying NTZ's antigiardial activity are not well-understood. Herein, we identified the glucose-6-phosphate::6-phosphogluconate dehydrogenase (GlG6PD::6PGL) fused enzyme as a nitazoxanide target, as NTZ behaves as a GlG6PD::6PGL catalytic inhibitor. Furthermore, fluorescence assays suggest alterations in the stability of GlG6PD::6PGL protein, whereas the results indicate a loss of catalytic activity due to conformational and folding changes. Molecular docking and dynamic simulation studies suggest a model of NTZ binding on the active site of the G6PD domain and near the structural NADP+ binding site. The findings of this study provide a novel mechanistic basis and strategy for the antigiardial activity of the NTZ drug.


Subject(s)
Giardia lamblia , Giardiasis , Humans , Giardiasis/drug therapy , Molecular Docking Simulation , Thiazoles/pharmacology , Thiazoles/therapeutic use
6.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558035

ABSTRACT

Protozoan parasites, such as Giardia lamblia and Trichomonas vaginalis, cause the most prevalent infections in humans in developing countries and provoke significant morbidity and mortality in endemic countries. Despite its side-effects, metronidazole is still the drug of choice as a giardiacidal and trichomonacidal tissue-active agent. However, the emergence of metronidazole resistance and its evolved strategies of parasites to evade innate host defenses have hindered the identification and development of new therapeutic strategies against these parasites. Here, we tested five synthesized benzimidazole derivatives as possible drugs for treating giardiasis and trichomoniasis, probing the bifunctional enzyme glucose 6-phosphate dehydrogenase::6-phosphogluconolactone from G. lamblia (GlG6PD::6PGL) and T. vaginalis (TvG6PD::6PGL) as a drug target. The investigated benzimidazole derivatives were H-B2M1, H-B2M2, H2N-BZM6, O2N-BZM7, and O2N-BZM9. The recombinant enzymes were used in inhibition assays, and in silico computational predictions and spectroscopic studies were applied to follow the structural alteration of the enzymes and identify the possible mechanism of inhibition. We identified two potent benzimidazole compounds (O2N-BZM7 and O2N-BZM9), which are capable of inhibiting both protozoan G6PD::6PGL enzymes and in vitro assays with these parasites, showing that these compounds also affect their viability. These results demonstrate that other therapeutic targets of the compounds are the enzymes GlG6PD::6PGL and TvG6PD::6PGL, which contribute to their antiparasitic effect and their possible use in antigiardial and trichomonacidal therapies.


Subject(s)
Antiprotozoal Agents , Giardia lamblia , Parasites , Trichomonas vaginalis , Animals , Humans , Metronidazole/pharmacology , Antiparasitic Agents/pharmacology , Benzimidazoles/pharmacology , Antiprotozoal Agents/pharmacology
7.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430836

ABSTRACT

Treatments to combat giardiasis have been reported to have several drawbacks, partly due to the drug resistance and toxicity of current antiparasitic agents. These constraints have prompted many researchers to investigate new drugs that act against protozoan parasites. Enzyme inhibition is an important means of regulating pathogen metabolism and has recently been identified as a significant alternative target in the search for new treatments. Glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase (G6PD::6PGL) is a bifunctional enzyme involved in the pentose phosphate pathway (PPP) in Giardia lamblia (G. lamblia). The G. lamblia enzyme is unusual since, unlike the human enzyme, it is a fused enzyme. Here, we show, through inhibition assays, that an in-house chemical library of 120 compounds and four target compounds, named CNZ-7, CNZ-8, CMC-1, and FLP-2, are potent inhibitors of the G. lamblia G6PD::6PGL fused enzyme. With a constant (k2) of 2.3, 3.2, and 2.8 M−1 s−1, respectively, they provoke alterations in the secondary and tertiary protein structure and global stability. As a novel approach, target compounds show antigiardial activity, with IC50 values of 8.7, 15.2, 15.3, and 24.1 µM in trophozoites from G. lamblia. Moreover, these compounds show selectivity against G. lamblia, since, through counter-screening in Caco-2 and HT29 human cells, they were found to have low toxicity. This finding positions these compounds as a potential and attractive starting point for new antigiardial drugs.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Humans , Giardiasis/drug therapy , Giardiasis/parasitology , Trophozoites/metabolism , Glucosephosphate Dehydrogenase/metabolism , Caco-2 Cells
8.
Microorganisms ; 10(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35889079

ABSTRACT

Helicobacter pylori (H. pylori) has been proposed as the foremost risk factor for the development of gastric cancer. We found that H. pylori express the enzyme glucose-6-phosphate dehydrogenase (HpG6PD), which participates in glucose metabolism via the pentose phosphate pathway. Thus, we hypothesized that if the biochemical and physicochemical characteristics of HpG6PD contrast with the host G6PD (human G6PD, HsG6PD), HpG6PD becomes a potential target for novel drugs against H. pylori. In this work, we characterized the biochemical properties of the HpG6PD from the H.pylori strain 29CaP and expressed the active recombinant protein, to analyze its steady-state kinetics, thermostability, and biophysical aspects. In addition, we analyzed the HpG6PD in silico structural properties to compare them with those of the HsG6PD. The optimal pH for enzyme activity was 7.5, with a T1/2 of 46.6 °C, at an optimum stability temperature of 37 °C. The apparent Km values calculated for G6P and NADP+ were 75.0 and 12.8 µM, respectively. G6P does not protect HpG6PD from trypsin digestion, but NADP+ does protect the enzyme from trypsin and guanidine hydrochloride (Gdn-HCl). The biochemical characterization of HpG6PD contributes to knowledge regarding H. pylori metabolism and opens up the possibility of using this enzyme as a potential target for specific and efficient treatment against this pathogen; structural alignment indicates that the three-dimensional (3D) homodimer model of the G6PD protein from H. pylori is different from the 3D G6PD of Homo sapiens.

9.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208965

ABSTRACT

Trichomoniasis is a sexually transmitted disease with a high incidence worldwide, affecting 270 million people. Despite the existence of a catalog of available drugs to combat this infection, their extensive use promotes the appearance of resistant Trichomonas vaginalis (T. vaginalis), and some side effects in treated people, which are reasons why it is necessary to find new alternatives to combat this infection. In this study, we investigated the impact of an in-house library comprising 55 compounds on the activity of the fused T. vaginalis G6PD::6PGL (TvG6PD::6PGL) protein, a protein mediating the first reaction step of the pentose phosphate pathway (PPP), a crucial pathway involved in the parasite's energy production. We found four compounds: JMM-3, CNZ-3, CNZ-17, and MCC-7, which inhibited the TvG6PD::6PGL protein by more than 50%. Furthermore, we determined the IC50, the inactivation constants, and the type of inhibition. Our results showed that these inhibitors induced catalytic function loss of the TvG6PD::6PGL enzyme by altering its secondary and tertiary structures. Finally, molecular docking was performed for the best inhibitors, JMM-3 and MCC-7. All our findings demonstrate the potential role of these selected hit compounds as TvG6PD::6PGL enzyme selective inhibitors.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins , Enzyme Inhibitors/chemistry , Glucosephosphate Dehydrogenase , Molecular Docking Simulation , Trichomonas vaginalis/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Glucosephosphate Dehydrogenase/chemistry , Kinetics
10.
Genes (Basel) ; 12(9)2021 08 27.
Article in English | MEDLINE | ID: mdl-34573317

ABSTRACT

Gliomas are heterogeneous, solid, and intracranial tumors that originate from glial cells. Malignant cells from the tumor undergo metabolic alterations to obtain the energy required for proliferation and the invasion of the cerebral parenchyma. The alterations in the expression of the genes related to the metabolic pathways can be detected in biopsies of gliomas of different CNS WHO grades. In this study, we evaluated the expression of 16 candidate reference genes in the HMC3 microglia cell line. Then, statistical algorithms such as BestKeeper, the comparative ΔCT method, geNorm, NormFinder, and RefFinder were applied to obtain the genes most suitable to be considered as references for measuring the levels of expression in glioma samples. The results show that PKM and TPI1 are two novel genes suitable for genic expression studies on gliomas. Finally, we analyzed the expression of genes involved in metabolic pathways in clinical samples of brain gliomas of different CNS WHO grades. RT-qPCR analysis showed that in CNS WHO grade 3 and 4 gliomas, the expression levels of HK1, PFKM, GAPDH, G6PD, PGD1, IDH1, FASN, ACACA, and ELOVL2 were higher than those of CNS WHO grade 1 and 2 glioma biopsies. Hence, our results suggest that reference genes from metabolic pathways have different expression profiles depending on the stratification of gliomas and constitute a potential model for studying the development of this type of tumor and the search for molecular targets to treat gliomas.


Subject(s)
Real-Time Polymerase Chain Reaction , Reference Standards
11.
Molecules ; 26(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34443540

ABSTRACT

Helicobacter pylori (H. pylori) is a pathogen that can remain in the stomach of an infected person for their entire life. As a result, this leads to the development of severe gastric diseases such as gastric cancer. In addition, current therapies have several problems including antibiotics resistance. Therefore, new practical options to eliminate this bacterium, and its induced affections, are required to avoid morbidity and mortality worldwide. One strategy in the search for new drugs is to detect compounds that inhibit a limiting step in a central metabolic pathway of the pathogen of interest. In this work, we tested 55 compounds to gain insights into their possible use as new inhibitory drugs of H. pylori glucose-6-phosphate dehydrogenase (HpG6PD) activity. The compounds YGC-1; MGD-1, MGD-2; TDA-1; and JMM-3 with their respective scaffold 1,3-thiazolidine-2,4-dione; 1H-benzimidazole; 1,3-benzoxazole, morpholine, and biphenylcarbonitrile showed the best inhibitory activity (IC50 = 310, 465, 340, 204 and 304 µM, respectively). We then modeled the HpG6PD protein by homology modeling to conduct an in silico study of the chemical compounds and discovers its possible interactions with the HpG6PD enzyme. We found that compounds can be internalized at the NADP+ catalytic binding site. Hence, they probably exert a competitive inhibitory effect with NADP+ and a non-competitive or uncompetitive effect with G6P, that of the compounds binding far from the enzyme's active site. Based on these findings, the tested compounds inhibiting HpG6PD represent promising novel drug candidates against H. pylori.


Subject(s)
Computer Simulation , Enzyme Inhibitors/pharmacology , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Helicobacter pylori/enzymology , Genetic Vectors/metabolism , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Helicobacter pylori/drug effects , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Recombinant Proteins/isolation & purification , Structural Homology, Protein
12.
Microorganisms ; 9(8)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34442758

ABSTRACT

Giardia lamblia is a single-celled eukaryotic parasite with a small genome and is considered an early divergent eukaryote. The pentose phosphate pathway (PPP) plays an essential role in the oxidative stress defense of the parasite and the production of ribose-5-phosphate. In this parasite, the glucose-6-phosphate dehydrogenase (G6PD) is fused with the 6-phosphogluconolactonase (6PGL) enzyme, generating the enzyme named G6PD::6PGL that catalyzes the first two steps of the PPP. Here, we report that the G6PD::6PGL is a bifunctional enzyme with two catalytically active sites. We performed the kinetic characterization of both domains in the fused G6PD::6PGL enzyme, as well as the individual cloned G6PD. The results suggest that the catalytic activity of G6PD and 6PGL domains in the G6PD::6PGL enzyme are more efficient than the individual proteins. Additionally, using enzymatic and mass spectrometry assays, we found that the final metabolites of the catalytic reaction of the G6PD::6PGL are 6-phosphoglucono-δ-lactone and 6-phosphogluconate. Finally, we propose the reaction mechanism in which the G6PD domain performs the catalysis, releasing 6-phosphoglucono-δ-lactone to the reaction medium. Then, this metabolite binds to the 6PGL domain catalyzing the hydrolysis reaction and generating 6-phosphogluconate. The structural difference between the G. lamblia fused enzyme G6PD::6PGL with the human G6PD indicate that the G6PD::6PGL is a potential drug target for the rational synthesis of novels anti-Giardia drugs.

13.
Mol Biochem Parasitol ; 244: 111383, 2021 07.
Article in English | MEDLINE | ID: mdl-34048823

ABSTRACT

Giardia lamblia, due to the habitat in which it develops, requires a continuous supply of intermediate compounds that allow it to survive in the host. The pentose phosphate pathway (PPP) provides essential molecules such as NADPH and ribulose-5-phosphate during the oxidative phase of the pathway. One of the key enzymes during this stage is 6-phosphogluconate dehydrogenase (6 PGDH) for generating NADPH. Given the relevance of the enzyme, in the present work, the 6pgdh gene from G. lamblia was amplified and cloned to produce the recombinant protein (Gl-6 PGDH) and characterize it functionally and structurally after the purification of Gl-6 PGDH by affinity chromatography. The results of the characterization showed that the protein has a molecular mass of 54 kDa, with an optimal pH of 7.0 and a temperature of 36-42 °C. The kinetic parameters of Gl-6 PGDH were Km = 49.2 and 139.9 µM (for NADP+ and 6-PG, respectively), Vmax =26.27 µmol*min-1*mg-1, and Kcat = 24.0 s-1. Finally, computational modeling studies were performed to obtain a structural visualization of the Gl-6 PGDH protein. The generation of the model and the characterization assays will allow us to expand our knowledge for future studies of the function of the protein in the metabolism of the parasite.


Subject(s)
Giardia lamblia/enzymology , Gluconates/chemistry , NADP/chemistry , Phosphogluconate Dehydrogenase/chemistry , Protozoan Proteins/chemistry , Ribulosephosphates/chemistry , Amino Acid Motifs , Binding Sites , Cloning, Molecular/methods , Gene Expression , Geobacillus stearothermophilus/chemistry , Geobacillus stearothermophilus/enzymology , Giardia lamblia/genetics , Gluconates/metabolism , Humans , Kinetics , Models, Molecular , NADP/metabolism , Pentose Phosphate Pathway/genetics , Phosphogluconate Dehydrogenase/genetics , Phosphogluconate Dehydrogenase/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribulosephosphates/metabolism , Structural Homology, Protein , Substrate Specificity , Thermodynamics
14.
Biochim Biophys Acta Gen Subj ; 1865(3): 129828, 2021 03.
Article in English | MEDLINE | ID: mdl-33347959

ABSTRACT

BACKGROUND: The pentose phosphate pathway (PPP) has received significant attention because of the role of NADPH and R-5-P in the maintenance of cancer cells, which are necessary for the synthesis of fatty acids and contribute to uncontrollable proliferation. The HsG6PD enzyme is the rate-limiting step in the oxidative branch of the PPP, leading to an increase in the expression levels in tumor cells; therefore, the protein has been proposed as a target for the development of new molecules for use in cancer. METHODS: Through in vitro studies, we assayed the effects of 55 chemical compounds against recombinant HsG6PD. Here, we present the kinetic characterization of four new HsG6PD inhibitors as well as their functional and structural effects on the protein. Furthermore, molecular docking was performed to determine the interaction of the best hits with HsG6PD. RESULTS: Four compounds, JMM-2, CCM-4, CNZ-3, and CNZ-7, were capable of reducing HsG6PD activity and showed noncompetitive and uncompetitive inhibition. Moreover, experiments using circular dichroism and fluorescence spectroscopy showed that the molecules affect the structure (secondary and tertiary) of the protein as well as its thermal stability. Computational docking analysis revealed that the interaction of the compounds with the protein does not occur at the active site. CONCLUSIONS: We identified two new compounds (CNZ-3 and JMM-2) capable of inhibiting HsG6PD that, compared to other previously known HsG6PD inhibitors, showed different mechanisms of inhibition. GENERAL SIGNIFICANCE: Screening of new inhibitors for HsG6PD with a future pharmacological approach for the study and treatment of cancer.


Subject(s)
Enzyme Inhibitors/chemistry , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Small Molecule Libraries/chemistry , Catalytic Domain , Enzyme Assays , Gene Expression , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Humans , Kinetics , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity , Thermodynamics
15.
Int J Mol Sci ; 21(14)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650494

ABSTRACT

This report describes a functional and structural analysis of fused glucose-6-phosphate dehydrogenase dehydrogenase-phosphogluconolactonase protein from the protozoan Trichomonas vaginalis (T. vaginalis). The glucose-6-phosphate dehydrogenase (g6pd) gene from T. vaginalis was isolated by PCR and the sequence of the product showed that is fused with 6pgl gene. The fused Tvg6pd::6pgl gene was cloned and overexpressed in a heterologous system. The recombinant protein was purified by affinity chromatography, and the oligomeric state of the TvG6PD::6PGL protein was found as tetramer, with an optimal pH of 8.0. The kinetic parameters for the G6PD domain were determined using glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP+) as substrates. Biochemical assays as the effects of temperature, susceptibility to trypsin digestion, and analysis of hydrochloride of guanidine on protein stability in the presence or absence of NADP+ were performed. These results revealed that the protein becomes more stable in the presence of the NADP+. In addition, we determined the dissociation constant for the binding (Kd) of NADP+ in the protein and suggests the possible structural site in the fused TvG6PD::6PGL protein. Finally, computational modeling studies were performed to obtain an approximation of the structure of TvG6PD::6PGL. The generated model showed differences with the GlG6PD::6PGL protein (even more so with human G6PD) despite both being fused.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Enzyme Stability/genetics , Glucosephosphate Dehydrogenase/genetics , NADP/genetics , Protozoan Proteins/genetics , Recombinant Proteins/genetics , Trichomonas vaginalis/genetics , Amino Acid Sequence , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Protein Stability , Sequence Alignment , Temperature
16.
Mol Genet Genomic Med ; 8(8): e1266, 2020 08.
Article in English | MEDLINE | ID: mdl-32510873

ABSTRACT

BACKGROUND: Craniosynostosis is one of the major genetic disorders affecting 1 in 2,100-2,500 live newborn children. Environmental and genetic factors are involved in the manifestation of this disease. The suggested genetic causes of craniosynostosis are pathogenic variants in FGFR1, FGFR2, FGFR3, and TWIST1 genes. METHODS: In order to describe their major clinical characteristics and the presence of pathogenic variants, a sample of 36 Mexican patients with craniosynostosis diagnosed as: Crouzon (OMIM 123,500), Pfeiffer (OMIM 101,600), Apert (OMIM 101,200), Saethre-Chotzen (OMIM 101,400), and Muenke (OMIM 602,849) was analyzed. RESULTS: In addition to craniosynostosis, most of the patients presented hypertelorism, midface hypoplasia, and abnormalities in hands and feet. To detect the pathogenic variants p.Pro252Arg FGFR1 (OMIM 136,350), p.Ser252Trp, p.Pro253Arg FGFR2 (OMIM 176,943), p.Pro250Arg, FGFR3 (OMIM 134,934), and p.Gln119Pro TWIST1 (OMIM 601,622), PCR amplification and restriction enzyme digestion were performed. Four and two patients with Apert presented the pathogenic variants p.Ser252Trp and p.Pro253Arg in FGFR2, respectively (with a frequency of 11.1% and 5.5%). The p.Pro250Arg pathogenic variant of FGFR3 was found in a patient with Muenke (with a frequency of 2.8%). The above percentages were calculated with the total number of patients. CONCLUSION: The contribution of this work is discreet, since only 4 genes were analyzed and sample size is small. However, this strategy could be improved by sequencing the FGFR1, FGFR2, FGFR3, and TWIST1 genes, to determine different pathogenic variants. On the other hand, it would be important to include other genes, such as TCF12 (OMIM 600,480), MSX2 (OMIM 123,101), RAB23 (OMIM 606,144), and EFNB1 (OMIM 300,035), to determine their participation in craniosynostosis in the Mexican population.


Subject(s)
Craniosynostoses/genetics , Nuclear Proteins/genetics , Phenotype , Receptors, Fibroblast Growth Factor/genetics , Twist-Related Protein 1/genetics , Adult , Child , Child, Preschool , Craniosynostoses/pathology , Female , Gene Frequency , Humans , Infant , Male , Mexico , Mutation, Missense
17.
Int J Mol Sci ; 21(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326520

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most frequent human enzymopathy, affecting over 400 million people globally. Worldwide, 217 mutations have been reported at the genetic level, and only 19 have been found in Mexico. The objective of this work was to contribute to the knowledge of the function and structure of three single natural variants (G6PD A+, G6PD San Luis Potosi, and G6PD Guadalajara) and a double mutant (G6PD Mount Sinai), each localized in a different region of the three-dimensional (3D) structure. In the functional characterization of the mutants, we observed a decrease in specific activity, protein expression and purification, catalytic efficiency, and substrate affinity in comparison with wild-type (WT) G6PD. Moreover, the analysis of the effect of all mutations on the structural stability showed that its presence increases denaturation and lability with temperature and it is more sensible to trypsin digestion protease and guanidine hydrochloride compared with WT G6PD. This could be explained by accelerated degradation of the variant enzymes due to reduced stability of the protein, as is shown in patients with G6PD deficiency.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/enzymology , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Anilino Naphthalenesulfonates/chemistry , Catalysis , Circular Dichroism , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/isolation & purification , Glucosephosphate Dehydrogenase Deficiency/metabolism , Guanidine , Humans , Kinetics , Mexico , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Stability , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Software , Temperature , Trypsin/chemistry
18.
Int J Mol Sci ; 20(21)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31652968

ABSTRACT

Gluconacetobacter diazotrophicus PAL5 (GDI) is an endophytic bacterium with potential biotechnological applications in industry and agronomy. The recent description of its complete genome and its principal metabolic enzymes suggests that glucose metabolism is accomplished through the pentose phosphate pathway (PPP); however, the enzymes participating in this pathway have not yet been characterized in detail. The objective of the present work was to clone, purify, and biochemically and physicochemically characterize glucose-6-phosphate dehydrogenase (G6PD) from GDI. The gene was cloned and expressed as a tagged protein in E. coli to be purified by affinity chromatography. The native state of the G6PD protein in the solution was found to be a tetramer with optimal activity at pH 8.8 and a temperature between 37 and 50 °C. The apparent Km values for G6P and nicotinamide adenine dinucleotide phosphate (NADP+) were 63 and 7.2 µM, respectively. Finally, from the amino acid sequence a three-dimensional (3D) model was obtained, which allowed the arrangement of the amino acids involved in the catalytic activity, which are conserved (RIDHYLGKE, GxGGDLT, and EKPxG) with those of other species, to be identified. This characterization of the enzyme could help to identify new environmental conditions for the knowledge of the plant-microorganism interactions and a better use of GDI in new technological applications.


Subject(s)
Cloning, Molecular , Gluconacetobacter/enzymology , Glucosephosphate Dehydrogenase/metabolism , Escherichia coli/metabolism , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/genetics , Hydrogen-Ion Concentration , Kinetics , NADP/metabolism , Protein Stability , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Temperature
19.
Int J Mol Sci ; 17(5)2016 May 21.
Article in English | MEDLINE | ID: mdl-27213370

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.


Subject(s)
American Indian or Alaska Native/genetics , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/genetics , Mutation , Catalytic Domain , Cloning, Molecular , Computational Biology/methods , Crystallography, X-Ray , Glucosephosphate Dehydrogenase/metabolism , Humans , Kinetics , Mexico , Models, Molecular , Protein Stability , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
20.
Int J Mol Sci ; 16(12): 28657-68, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26633385

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.


Subject(s)
Genetic Variation , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/genetics , Models, Molecular , Molecular Conformation , Mutation , Catalysis , Enzyme Activation , Gene Expression , Glucosephosphate Dehydrogenase/metabolism , Humans , Kinetics , Protein Stability , Recombinant Proteins , Structure-Activity Relationship , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...