Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 17(1): 230, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760849

ABSTRACT

BACKGROUND: Anopheles funestus is a leading vector of malaria in most parts of East and Southern Africa, yet its ecology and responses to vector control remain poorly understood compared with other vectors such as Anopheles gambiae and Anopheles arabiensis. This study presents the first large-scale survey of the genetic and phenotypic expression of insecticide resistance in An. funestus populations in Tanzania. METHODS: We performed insecticide susceptibility bioassays on An. funestus mosquitoes in nine regions with moderate-to-high malaria prevalence in Tanzania, followed by genotyping for resistance-associated mutations (CYP6P9a, CYP6P9b, L119F-GSTe2) and structural variants (SV4.3 kb, SV6.5 kb). Generalized linear models were used to assess relationships between genetic markers and phenotypic resistance. An interactive R Shiny tool was created to visualize the data and support evidence-based interventions. RESULTS: Pyrethroid resistance was universal but reversible by piperonyl-butoxide (PBO). However, carbamate resistance was observed in only five of the nine districts, and dichloro-diphenyl-trichloroethane (DDT) resistance was found only in the Kilombero valley, south-eastern Tanzania. Conversely, there was universal susceptibility to the organophosphate pirimiphos-methyl in all sites. Genetic markers of resistance had distinct geographical patterns, with CYP6P9a-R and CYP6P9b-R alleles, and the SV6.5 kb structural variant absent or undetectable in the north-west but prevalent in all other sites, while SV4.3 kb was prevalent in the north-western and western regions but absent elsewhere. Emergent L119F-GSTe2, associated with deltamethrin resistance, was detected in heterozygous form in districts bordering Mozambique, Malawi and the Democratic Republic of Congo. The resistance landscape was most complex in western Tanzania, in Tanganyika district, where all five genetic markers were detected. There was a notable south-to-north spread of resistance genes, especially CYP6P9a-R, though this appears to be interrupted, possibly by the Rift Valley. CONCLUSIONS: This study underscores the need to expand resistance monitoring to include An. funestus alongside other vector species, and to screen for both the genetic and phenotypic signatures of resistance. The findings can be visualized online via an interactive user interface and could inform data-driven decision-making for resistance management and vector control. Since this was the first large-scale survey of resistance in Tanzania's An. funestus, we recommend regular updates with greater geographical and temporal coverage.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Malaria , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Tanzania/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Malaria/transmission , Malaria/epidemiology , Genetic Markers , Pyrethrins/pharmacology , Genotype , Mutation
2.
Malar J ; 21(1): 318, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335363

ABSTRACT

BACKGROUND: Insecticidal mosquito-proof netting screens could combine the best features of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), the two most important front line vector control interventions in Africa today, and also overcome the most important limitations of these methods. This study engaged members of a rural Tanzanian community in developing and evaluating simple, affordable and scalable procedures for installing readily available screening materials on eave gaps and windows of their own houses, and then treating those screens with a widely used IRS formulation of the organophosphate insecticide pirimiphos-methyl (PM). METHODS: A cohort of 54 households recruited upon consent, following which the structural features and occupant demographics of their houses were surveyed. Indoor mosquito densities were surveyed longitudinally, for approximately 3 months before and over 5 months after participatory house modification and screening using locally available materials. Each house was randomly assigned to one of three study arms: (1) No screens installed until the end of the study (negative control), (2) untreated screens installed, and (3) screened installed and then treated with PM, the insecticidal activity of which was subsequently assessed using standard cone assays. RESULTS: Almost all (52) recruited households participated until the end, at which point all houses had been successfully screened. In most cases, screening was only installed after making enabling structural modifications that were accepted by the enrolled households. Compared to unscreened houses, houses with either treated or untreated screens both almost entirely excluded Anopheles arabiensis (Relative reduction (RR) ≥ 98%, P < < 0.0001), the most abundant local malaria vector. However, screens were far less effective against Culex quinquefasciatus (RR ≤ 46%, P < < 0.0001), a non-malaria vector causing considerable biting nuisance, regardless of their treatment status. While PM did not augment household level protection by screens against either mosquito species (P = 0.676 and 0.831, respectively), 8 months after treatment it still caused 73% and 89% mortality among susceptible insectary-reared Anopheles gambiae following exposures of 3 and 30 min, respectively. CONCLUSIONS: Participatory approaches to mosquito proofing houses may be acceptable and effective, and installed screens may be suitable targets for residual insecticide treatments.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Humans , Animals , Mosquito Control/methods , Housing , Tanzania , Mosquito Vectors , Malaria/prevention & control
3.
Malar J ; 19(1): 109, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32156280

ABSTRACT

BACKGROUND: Residents of malaria-endemic communities spend several hours outdoors performing different activities, e.g. cooking, story-telling or eating, thereby exposing themselves to potentially-infectious mosquitoes. This compromises effectiveness of indoor interventions, notably long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). This study characterized common peri-domestic spaces in rural south-eastern Tanzania, and assessed protective efficacy against mosquitoes of hessian fabric mats and ribbons treated with the spatial repellent, transfluthrin, and fitted to chairs and outdoor kitchens, respectively. METHODS: Two hundred households were surveyed, and their most-used peri-domestic spaces physically characterized. Protective efficacies of locally-made transfluthrin-emanating chairs and hessian ribbons were tested in outdoor environments of 28 households in dry and wet seasons, using volunteer-occupied exposure-free double net traps. CDC light traps were used to estimate host-seeking mosquito densities within open-structure outdoor kitchens. Field-collected Anopheles arabiensis and Anopheles funestus mosquitoes were exposed underneath the chairs to estimate 24 h-mortality. Finally, The World Health Organization insecticide susceptibility tests were conducted on wild-caught Anopheles from the villages. RESULTS: Approximately half (52%) of houses had verandas. Aside from these verandas, most houses also had peri-domestic spaces where residents stayed most times (67% of houses with verandas and 94% of non-veranda houses). Two-thirds of these spaces were sited under trees, and only one third (34.4%) were built-up. The outdoor structures were usually makeshift kitchens having roofs and partial walls. Transfluthrin-treated chairs reduced outdoor-biting An. arabiensis densities by 70-85%, while transfluthrin-treated hessian ribbons fitted to the outdoor kitchens caused 77-81% reduction in the general peri-domestic area. Almost all the field-collected An. arabiensis (99.4%) and An. funestus (100%) exposed under transfluthrin-treated chairs died. The An. arabiensis were susceptible to non-pyrethroids (pirimiphos methyl and bendiocarb), but resistant to pyrethroids commonly used on LLINs (deltamethrin and permethrin). CONCLUSION: Most houses had actively-used peri-domestic outdoor spaces where exposure to mosquitoes occurred. The transfluthrin-treated chairs and ribbons reduced outdoor-biting malaria vectors in these peri-domestic spaces, and also elicited significant mortality among pyrethroid-resistant field-caught malaria vectors. These two new prototype formats for transfluthrin emanators, if developed further, may constitute new options for complementing LLINs and IRS with outdoor protection against malaria and other mosquito-borne pathogens in areas where peri-domestic human activities are common.


Subject(s)
Cyclopropanes , Fluorobenzenes , Insect Bites and Stings/prevention & control , Insect Repellents , Insecticides , Mosquito Control/instrumentation , Mosquito Control/methods , Adult , Animals , Anopheles , Female , Housing , Humans , Male , Tanzania
4.
Parasit Vectors ; 11(1): 231, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29631633

ABSTRACT

BACKGROUND: Transfluthrin vapour prevents mosquito bites by disrupting their host-seeking behaviors. We measured the additional benefits of combining transfluthrin-treated sisal decorations and long-lasting insecticidal nets (LLINs) with an aim of extending protection against early evening, indoor-biting malaria vectors when LLINs are ineffective. METHODS: We investigated the indoor protective efficacy of locally made sisal decorative baskets (0.28 m2) treated with 2.5 ml and 5.0 ml transfluthrin, in terms of mosquito density, exposure to bites and 24 h mortality. Experiments were conducted in experimental huts, located in Lupiro village, Ulanga District, south-eastern Tanzania. Human landing catches (HLC) were used to measure exposure to bites between 19:00-23:00 h. Each morning, at 06:00 h, mosquitoes were collected inside huts and in exit traps and monitored for 24 h mortality. RESULTS: Sisal decorative baskets (0.28 m2) treated with 2.5 ml and 5.0 ml transfluthrin deterred three-quarters of Anopheles arabiensis mosquitoes from entering huts (relative rate, RR = 0.26, 95% confidence interval, CI: 0.20-0.34, P < 0.001 and RR= 0.29, 95% CI: 0.22-0.37, P < 0.001, respectively). Both treatments induced a 10-fold increase in 24 h mortality of An. arabiensis mosquitoes (odds ratio, OR = 12.26, 95% CI: 7.70-19.51, P < 0.001 and OR = 18.42, 95% CI: 11.36-29.90, P < 0.001, respectively). CONCLUSIONS: Sisal decorative items treated with spatial repellents provide additional household and personal protection against indoor biting malaria and nuisance mosquitoes in the early evening, when conventional indoor vector control tools, such as LLINs, are not in use. We recommend future studies to investigate the epidemiological relevance of combining LLINs and transfluthrin decorated baskets in terms of their effect on reduction in malaria prevalence.


Subject(s)
Anopheles/physiology , Cyclopropanes/pharmacology , Feeding Behavior/drug effects , Fluorobenzenes/pharmacology , Insect Repellents/pharmacology , Insecticide-Treated Bednets , Mosquito Control/methods , Mosquito Vectors/physiology , Animals , Humans , Tanzania
5.
Parasit Vectors ; 10(1): 197, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28427437

ABSTRACT

BACKGROUND: A number of mosquito vectors bite and rest outdoors, which contributes to sustained residual malaria transmission in endemic areas. Spatial repellents are thought to create a protective "bubble" within which mosquito bites are reduced and may be ideal for outdoor use. This study builds on previous studies that proved efficacy of transfluthrin-treated hessian strips against outdoor biting mosquitoes. The goal of this study was to modify strips into practical, attractive and acceptable transfluthrin treated sisal and hessian emanators that confer protection against potential infectious bites before people use bed nets especially in the early evening and outdoors. This study was conducted in Kilombero Valley, Ulanga District, south-eastern Tanzania. RESULTS: The protective efficacy of hand-crafted transfluthrin-treated sisal decorative baskets and hessian wall decorations against early evening outdoor biting malaria vectors was measured by human landing catches (HLC) in outdoor bars during peak outdoor mosquito biting activity (19:00 to 23:00 h). Treated baskets and wall decorations reduced bites of Anopheles arabiensis mosquitoes by 89% (Relative Rate, RR = 0.11, 95% confidence interval, CI: 0.09-0.15, P < 0.001) and 86% (RR = 0.14, 95% CI: 0.11-0.18, P < 0.001), respectively. In addition, they significantly reduced exposure to outdoor bites of Culex spp. by 66% (RR = 0.34, 95% CI: 0.22-0.52, P < 0.001) and 56% (RR = 0.44, 95% CI: 0.29-0.66, P < 0.001), respectively. CONCLUSION: Locally hand-crafted transfluthrin-treated sisal decorative baskets and hessian wall decorations are readily acceptable and confer protection against outdoor biting malaria vectors in the early evening and outdoors: when people are resting on the verandas, porches or in outdoor social places such as bars and restaurants. Additional research can help support the use of such items as complementary interventions to expand protection to communities currently experiencing outdoor transmission of mosquito-borne pathogens.


Subject(s)
Anopheles , Cyclopropanes , Fluorobenzenes , Insect Bites and Stings/prevention & control , Insect Repellents , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors , Animals , Humans , Malaria/epidemiology , Malaria/parasitology , Malaria/transmission , Patient Acceptance of Health Care , Tanzania/epidemiology , Time Factors
6.
Emerg Infect Dis ; 23(5): 782-789, 2017 05.
Article in English | MEDLINE | ID: mdl-28418299

ABSTRACT

We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors.


Subject(s)
Insecticide-Treated Bednets , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Animals , Humans , Malaria/epidemiology , Malaria/transmission , Mortality , Mosquito Control/methods , Mosquito Vectors/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...