Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 676
Filter
1.
Brain Commun ; 6(5): fcae276, 2024.
Article in English | MEDLINE | ID: mdl-39229494

ABSTRACT

Reduced brain volumes and more prominent white matter hyperintensities on MRI scans are commonly observed among older adults without cognitive impairment. However, it remains unclear whether rates of change in these measures among cognitively normal adults differ as a function of genetic risk for late-onset Alzheimer's disease, including APOE-ɛ4, APOE-ɛ2 and Alzheimer's disease polygenic risk scores (AD-PRS), and whether these relationships are influenced by other variables. This longitudinal study examined the trajectories of regional brain volumes and white matter hyperintensities in relationship to APOE genotypes (N = 1541) and AD-PRS (N = 1093) in a harmonized dataset of middle-aged and older individuals with normal cognition at baseline (mean baseline age = 66 years, SD = 9.6) and an average of 5.3 years of MRI follow-up (max = 24 years). Atrophy on volumetric MRI scans was quantified in three ways: (i) a composite score of regions vulnerable to Alzheimer's disease (SPARE-AD); (ii) hippocampal volume; and (iii) a composite score of regions indexing advanced non-Alzheimer's disease-related brain aging (SPARE-BA). Global white matter hyperintensity volumes were derived from fluid attenuated inversion recovery (FLAIR) MRI. Using linear mixed effects models, there was an APOE-ɛ4 gene-dose effect on atrophy in the SPARE-AD composite and hippocampus, with greatest atrophy among ɛ4/ɛ4 carriers, followed by ɛ4 heterozygouts, and lowest among ɛ3 homozygouts and ɛ2/ɛ2 and ɛ2/ɛ3 carriers, who did not differ from one another. The negative associations of APOE-ɛ4 with atrophy were reduced among those with higher education (P < 0.04) and younger baseline ages (P < 0.03). Higher AD-PRS were also associated with greater atrophy in SPARE-AD (P = 0.035) and the hippocampus (P = 0.014), independent of APOE-ɛ4 status. APOE-ɛ2 status (ɛ2/ɛ2 and ɛ2/ɛ3 combined) was not related to baseline levels or atrophy in SPARE-AD, SPARE-BA or the hippocampus, but was related to greater increases in white matter hyperintensities (P = 0.014). Additionally, there was an APOE-ɛ4 × AD-PRS interaction in relation to white matter hyperintensities (P = 0.038), with greater increases in white matter hyperintensities among APOE-ɛ4 carriers with higher AD-PRS. APOE and AD-PRS associations with MRI measures did not differ by sex. These results suggest that APOE-ɛ4 and AD-PRS independently and additively influence longitudinal declines in brain volumes sensitive to Alzheimer's disease and synergistically increase white matter hyperintensity accumulation among cognitively normal individuals. Conversely, APOE-ɛ2 primarily influences white matter hyperintensity accumulation, not brain atrophy. Results are consistent with the view that genetic factors for Alzheimer's disease influence atrophy in a regionally specific manner, likely reflecting preclinical neurodegeneration, and that Alzheimer's disease risk genes contribute to white matter hyperintensity formation.

2.
medRxiv ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39228697

ABSTRACT

Cognitive resilience describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals. We demonstrate that this approach makes specific, uncontrollable assumptions and likely leads to biased and erroneous resilience estimates. We propose an alternative strategy which overcomes the standard approach's limitations using machine learning principles. Our proposed approach makes fewer assumptions about the data and construct to be measured and achieves better estimation accuracy on simulated ground-truth data.

3.
Nat Med ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147830

ABSTRACT

Brain aging process is influenced by various lifestyle, environmental and genetic factors, as well as by age-related and often coexisting pathologies. Magnetic resonance imaging and artificial intelligence methods have been instrumental in understanding neuroanatomical changes that occur during aging. Large, diverse population studies enable identifying comprehensive and representative brain change patterns resulting from distinct but overlapping pathological and biological factors, revealing intersections and heterogeneity in affected brain regions and clinical phenotypes. Herein, we leverage a state-of-the-art deep-representation learning method, Surreal-GAN, and present methodological advances and extensive experimental results elucidating brain aging heterogeneity in a cohort of 49,482 individuals from 11 studies. Five dominant patterns of brain atrophy were identified and quantified for each individual by respective measures, R-indices. Their associations with biomedical, lifestyle and genetic factors provide insights into the etiology of observed variances, suggesting their potential as brain endophenotypes for genetic and lifestyle risks. Furthermore, baseline R-indices predict disease progression and mortality, capturing early changes as supplementary prognostic markers. These R-indices establish a dimensional approach to measuring aging trajectories and related brain changes. They hold promise for precise diagnostics, especially at preclinical stages, facilitating personalized patient management and targeted clinical trial recruitment based on specific brain endophenotypic expression and prognosis.

4.
J Alzheimers Dis ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39213065

ABSTRACT

Background: Observational Alzheimer's disease (AD) cohorts including the Australian, Biomarkers, Imaging and Lifestyle (AIBL) Study have enhanced our understanding of AD. The generalizability of findings from AIBL to the general population has yet to be studied. Objective: We aimed to compare characteristics of people with AD dementia in AIBL to 1) the general population of older Australians using pharmacological treatment for AD dementia, and to 2) the general population of older Australians who self-reported a diagnosis of dementia. Methods: Descriptive study comparing people aged 65 years of over (1) in AIBL that had a diagnosis of AD dementia, (2) dispensed with pharmacological treatment for AD in Australia in 2021 linked to the Australian census in 2021 (refer to as PBS/census), (3) self-reported a diagnosis of dementia in the 2021 Australian census (refer to as dementia/census). Baseline characteristics included age, sex, highest education attainment, primary language, and medical co-morbidities. Results: Participants in AIBL were younger, had more years of education, and had a lower culturally and linguistically diverse (CALD) population compared to the PBS/census cohort and dementia/census cohort (mean age±standard deviation - AIBL 79±7 years, PBS/census 81±7, p < 0.001, dementia/census 83±8, p < 0.001; greater than 12 years of education AIBL 40%, PBS/census 35%, p = 0.020, dementia/census 29%, p < 0.001; CALD - AIBL 3%, PBS/census 20%, p < 0.001, dementia/census 22%, p < 0.001). Conclusions: Our findings suggest that care should be taken regarding the generalizability of AIBL in CALD populations and the interpretation of results on the natural history of AD.

5.
ACS Chem Neurosci ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39197832

ABSTRACT

α-Synuclein (αSyn) aggregates, detected in the biofluids of patients with Parkinson's disease (PD), have the ability to catalyze their own aggregation, leading to an increase in the number and size of aggregates. This self-templated amplification is used by newly developed assays to diagnose Parkinson's disease and turns the presence of αSyn aggregates into a biomarker of the disease. It has become evident that αSyn can form fibrils with slightly different structures, called "strains" or polymorphs, but little is known about their differential reactivity in diagnostic assays. Here, we compared the properties of two well-described αSyn polymorphs. Using single-molecule techniques, we observed that one of the polymorphs had an increased tendency to undergo secondary nucleation and we showed that this could explain the differences in reactivity observed in in vitro seed amplification assay and cellular assays. Simulations and high-resolution microscopy suggest that a 100-fold difference in the apparent rate of growth can be generated by a surprisingly low number of secondary nucleation "points" (1 every 2000 monomers added by elongation). When both strains are present in the same seeded reaction, secondary nucleation displaces proportions dramatically and causes a single strain to dominate the reaction as the major end product.

7.
medRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38947004

ABSTRACT

Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and medial temporal lobe Tau-PET signal showed similar associations with cognitive decline on a global cognitive composite test (R2 PET=0.32 vs R2 PLASMA=0.32, pdifference=0.812) and with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential selection using plasma p-tau217 and then Tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical trials in preclinical AD.

8.
Alzheimers Res Ther ; 16(1): 175, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085973

ABSTRACT

Several (inter)national longitudinal dementia observational datasets encompassing demographic information, neuroimaging, biomarkers, neuropsychological evaluations, and muti-omics data, have ushered in a new era of potential for integrating machine learning (ML) into dementia research and clinical practice. ML, with its proficiency in handling multi-modal and high-dimensional data, has emerged as an innovative technique to facilitate early diagnosis, differential diagnosis, and to predict onset and progression of mild cognitive impairment and dementia. In this review, we evaluate current and potential applications of ML, including its history in dementia research, how it compares to traditional statistics, the types of datasets it uses and the general workflow. Moreover, we identify the technical barriers and challenges of ML implementations in clinical practice. Overall, this review provides a comprehensive understanding of ML with non-technical explanations for broader accessibility to biomedical scientists and clinicians.


Subject(s)
Dementia , Machine Learning , Humans , Dementia/diagnosis , Biomedical Research/methods , Neuroimaging/methods
9.
Brain Imaging Behav ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083144

ABSTRACT

This systematic review examines the prevalence, underlying mechanisms, cohort characteristics, evaluation criteria, and cohort types in white matter hyperintensity (WMH) pipeline and implementation literature spanning the last two decades. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we categorized WMH segmentation tools based on their methodologies from January 1, 2000, to November 18, 2022. Inclusion criteria involved articles using openly available techniques with detailed descriptions, focusing on WMH as a primary outcome. Our analysis identified 1007 visual rating scales, 118 pipeline development articles, and 509 implementation articles. These studies predominantly explored aging, dementia, psychiatric disorders, and small vessel disease, with aging and dementia being the most prevalent cohorts. Deep learning emerged as the most frequently developed segmentation technique, indicative of a heightened scrutiny in new technique development over the past two decades. We illustrate observed patterns and discrepancies between published and implemented WMH techniques. Despite increasingly sophisticated quantitative segmentation options, visual rating scales persist, with the SPM technique being the most utilized among quantitative methods and potentially serving as a reference standard for newer techniques. Our findings highlight the need for future standards in WMH segmentation, and we provide recommendations based on these observations.

10.
Article in English | MEDLINE | ID: mdl-38896210

ABSTRACT

BACKGROUND: The associations between mood disorders (anxiety and depression) and mild cognitive impairment (MCI) or Alzheimer's dementia (AD) remain unclear. METHODS: Data from the Australian Imaging, Biomarker & Lifestyle (AIBL) study were subjected to logistic regression to determine both cross-sectional and longitudinal associations between anxiety/depression and MCI/AD. Effect modification by selected covariates was analysed using the likelihood ratio test. RESULTS: Cross-sectional analysis was performed to explore the association between anxiety/depression and MCI/AD among 2,209 participants with a mean [SD] age of 72.3 [7.4] years, of whom 55.4% were female. After adjusting for confounding variables, we found a significant increase in the odds of AD among participants with two mood disorders (anxiety: OR 1.65 [95% CI 1.04-2.60]; depression: OR 1.73 [1.12-2.69]). Longitudinal analysis was conducted to explore the target associations among 1,379 participants with a mean age of 71.2 [6.6] years, of whom 56.3% were female. During a mean follow-up of 5.0 [4.2] years, 163 participants who developed MCI/AD (refer to as PRO) were identified. Only anxiety was associated with higher odds of PRO after adjusting for covariates (OR 1.56 [1.03-2.39]). However, after additional adjustment for depression, the association became insignificant. Additionally, age, sex, and marital status were identified as effect modifiers for the target associations. CONCLUSION: Our study provides supportive evidence that anxiety and depression impact on the evolution of MCI/AD, which provides valuable epidemiological insights that can inform clinical practice, guiding clinicians in offering targeted dementia prevention and surveillance programs to the at-risk populations.

11.
Nat Neurosci ; 27(7): 1236-1252, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898183

ABSTRACT

Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Genetic Predisposition to Disease , Precision Medicine/methods , Animals , Apolipoprotein E4/genetics
12.
Neurology ; 103(2): e209626, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38885444

ABSTRACT

BACKGROUND AND OBJECTIVES: In early Alzheimer disease (AD), ß-amyloid (Aß) deposition is associated with volume loss in the basal forebrain (BF) and cognitive decline. However, the extent to which Aß-related BF atrophy manifests as cognitive decline is not understood. This study sought to characterize the relationship between BF atrophy and the decline in memory and attention in patients with early AD. METHODS: Participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study who completed Aß-PET imaging and repeated MRI and cognitive assessments were included. At baseline, participants were classified based on their clinical dementia stage and Aß status, yielding groups that were cognitively unimpaired (CU) Aß-, CU Aß+, and mild cognitive impairment (MCI) Aß+. Linear mixed-effects models were used to assess changes in volumetric measures of BF subregions and the hippocampus and changes in AIBL memory and attention composite scores for each group compared with CU Aß- participants. Associations between Aß burden, brain atrophy, and cognitive decline were evaluated and explored further using mediation analyses. RESULTS: The cohort included 476 participants (72.6 ± 5.9 years, 55.0% female) with longitudinal data from a median follow-up period of 6.1 years. Compared with the CU Aß- group (n = 308), both CU Aß+ (n = 107) and MCI Aß+ (n = 61) adults showed faster decline in BF and hippocampal volumes and in memory and attention (Cohen d = 0.73-1.74). Rates of atrophy in BF subregions and the hippocampus correlated with cognitive decline, and each individually mediated the impact of Aß burden on memory and attention decline. When all mediators were considered simultaneously, hippocampal atrophy primarily influenced the effect of Aß burden on memory decline (ß [SE] = -0.139 [0.032], proportion mediated [PM] = 28.0%) while the atrophy of the posterior nucleus basalis of Meynert in the BF (ß [SE] = -0.068 [0.029], PM = 13.1%) and hippocampus (ß [SE] = -0.121 [0.033], PM = 23.4%) distinctively influenced Aß-related attention decline. DISCUSSION: These findings highlight the significant role of BF atrophy in the complex pathway linking Aß to cognitive impairment in early stages of AD. Volumetric assessment of BF subregions could be essential in elucidating the relationships between the brain structure and behavior in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Atrophy , Basal Forebrain , Cognitive Dysfunction , Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , Female , Male , Atrophy/pathology , Aged , Cognitive Dysfunction/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Amyloid beta-Peptides/metabolism , Basal Forebrain/pathology , Basal Forebrain/diagnostic imaging , Aged, 80 and over , Hippocampus/pathology , Hippocampus/diagnostic imaging , Neuropsychological Tests
13.
Brain Commun ; 6(3): fcae159, 2024.
Article in English | MEDLINE | ID: mdl-38784820

ABSTRACT

Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-ß accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-ß plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations, 11C-labelled Pittsburgh Compound B-PET and structural MRI. 18F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical 18F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater 18F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and 18F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease.

14.
Alzheimers Dement (Amst) ; 16(2): e12593, 2024.
Article in English | MEDLINE | ID: mdl-38770381

ABSTRACT

INTRODUCTION: Mounting evidence suggests that certain comorbidities may influence the clinical evolution of Alzheimer's dementia (AD). METHODS: We conducted logistic regression analyses on the medical history and cognitive health diagnoses of participants in the Australian Imaging, Biomarker & Lifestyle study (n = 2443) to investigate cross-sectional associations between various comorbidities and mild cognitive impairment (MCI)/AD. RESULTS: A mixture of associations were observed. Higher comorbidity of anxiety and other neurological disorders was associated with higher odds of AD, while arthritis, cancer, gastric complaints, high cholesterol, joint replacement, visual defect, kidney and liver disease were associated with lower odds of AD. DISCUSSION: This study underscores the links between specific comorbidities and MCI/AD. Further research is needed to elucidate the longitudinal comorbidity-MCI/AD associations and underlying mechanisms of these associations. Highlights: Comorbidities that significantly increased AD odds included anxiety and other neurological disorders.Arthritis, cancer, gastric complaints, high cholesterol, joint replacement, visual defect, kidney and liver disease were associated with lower odds of AD.Alcohol consumption had the most significant confounding effect in the study.Visual-AD association was modified by age, sex, and APOE ε4 allele status.Anxiety-AD and depression-AD associations were modified by sex.

15.
Alzheimers Dement ; 20(6): 4351-4365, 2024 06.
Article in English | MEDLINE | ID: mdl-38666355

ABSTRACT

INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.


Subject(s)
Alzheimer Disease , Lewy Bodies , alpha-Synuclein , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/genetics , Female , Male , Middle Aged , Lewy Bodies/pathology , Aged , Mutation , Brain/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Disease Progression
16.
Alzheimers Dement (Amst) ; 16(2): e12579, 2024.
Article in English | MEDLINE | ID: mdl-38651160

ABSTRACT

INTRODUCTION: This study investigated whether self-reported sleep quality is associated with brain amyloid beta (Aß) accumulation. METHODS: Linear mixed effect model analyses were conducted for 189 cognitively unimpaired (CU) older adults (mean ± standard deviation 74.0 ± 6.2; 53.2% female), with baseline self-reported sleep data, and positron emission tomography-determined brain Aß measured over a minimum of three time points (range 33.3-72.7 months). Analyses included random slopes and intercepts, interaction for apolipoprotein E (APOE) ε4 allele status, and time, adjusting for sex and baseline age. RESULTS: Sleep duration <6 hours, in APOE ε4 carriers, and sleep efficiency <65%, in the whole sample and APOE ε4 non-carriers, is associated with faster accumulation of brain Aß. DISCUSSION: These findings suggest a role for self-reported suboptimal sleep efficiency and duration in the accumulation of Alzheimer's disease (AD) neuropathology in CU individuals. Additionally, poor sleep efficiency represents a potential route via which individuals at lower genetic risk may progress to preclinical AD. Highlights: In cognitively unimpaired older adults self-report sleep is associated with brain amyloid beta (Aß) accumulation.Across sleep characteristics, this relationship differs by apolipoprotein E (APOE) genotype.Sleep duration <6 hours is associated with faster brain Aß accumulation in APOE ε4 carriers.Sleep efficiency < 65% is associated with faster brain Aß accumulation in APOE ε4 non-carriers.Personalized sleep interventions should be studied for potential to slow Aß accumulation.

17.
J Nucl Med ; 65(5): 781-787, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38575189

ABSTRACT

Amyloid-ß (Aß) accumulation in Alzheimer disease (AD) is typically measured using SUV ratio and the centiloid (CL) scale. The low spatial resolution of PET images is known to degrade quantitative metrics because of the partial-volume effect. This article examines the impact of spatial resolution, as determined by the reconstruction configuration, on the Aß PET quantitation in both cross-sectional and longitudinal data. Methods: The cross-sectional study involved 89 subjects with 20-min [18F]florbetapir scans generated on an mCT (44 Aß-negative [Aß-], 45 Aß-positive [Aß+]) using 69 reconstruction configurations, which varied in number of iteration updates, point-spread function, time-of-flight, and postreconstruction smoothing. The subjects were classified as Aß- or Aß+ visually. For each reconstruction, Aß CL was calculated using CapAIBL, and the spatial resolution was calculated as full width at half maximum (FWHM) using the barrel phantom method. The change in CLs and the effect size of the difference in CLs between Aß- and Aß+ groups with FWHM were examined. The longitudinal study involved 79 subjects (46 Aß-, 33 Aß+) with three 20-min [18F]flutemetamol scans generated on an mCT. The subjects were classified as Aß- or Aß+ using a cutoff CL of 20. All scans were reconstructed using low-, medium-, and high-resolution configurations, and Aß CLs were calculated using CapAIBL. Since linear Aß accumulation was assumed over a 10-y interval, for each reconstruction configuration, Aß accumulation rate differences (ARDs) between the second and first periods were calculated for all subjects. Zero ARD was used as a consistency metric. The number of Aß accumulators was also used to compare the sensitivity of CL across reconstruction configurations. Results: In the cross-sectional study, CLs in both the Aß- and the Aß+ groups were impacted by the FWHM of the reconstruction method. Without postreconstruction smoothing, Aß- CLs increased for a FWHM of 4.5 mm or more, whereas Aß+ CLs decreased across the FWHM range. High-resolution reconstructions provided the best statistical separation between groups. In the longitudinal study, the median ARD of low-resolution reconstructed data for the Aß- group was greater than zero whereas the ARDs of higher-resolution reconstructions were not significantly different from zero, indicating more consistent rate estimates in the higher-resolution reconstructions. Higher-resolution reconstructions identified 10 additional Aß accumulators in the Aß- group, resulting in a 22% increased group size compared with the low-resolution reconstructions. Higher-resolution reconstructions reduced the average CLs of the negative group by 12 points. Conclusion: High-resolution PET reconstructions, inherently less impacted by partial-volume effect, may improve Aß PET quantitation in both cross-sectional and longitudinal data. In the cross-sectional analysis, separation of CLs between Aß- and Aß+ cohorts increased with spatial resolution. Higher-resolution reconstructions also exhibited both improved consistency and improved sensitivity in measures of Aß accumulation. These features suggest that higher-resolution reconstructions may be advantageous in early-stage AD therapies.


Subject(s)
Amyloid beta-Peptides , Ethylene Glycols , Image Processing, Computer-Assisted , Positron-Emission Tomography , Humans , Amyloid beta-Peptides/metabolism , Cross-Sectional Studies , Positron-Emission Tomography/methods , Longitudinal Studies , Male , Female , Aged , Image Processing, Computer-Assisted/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Aged, 80 and over , Middle Aged , Aniline Compounds
18.
Alzheimers Dement (Amst) ; 16(1): e12561, 2024.
Article in English | MEDLINE | ID: mdl-38476638

ABSTRACT

INTRODUCTION: The standardized uptake value ratio (SUVR) is used to measure amyloid beta-positron emission tomography (Aß-PET) uptake in the brainDifferences in PET scanner technologies and image reconstruction techniques can lead to variability in PET images across scanners. This poses a challenge for Aß-PET studies conducted in multiple centers. The aim of harmonization is to achieve consistent Aß-PET measurements across different scanners. In this study, we propose an Aß-PET harmonization method of matching spatial resolution, as measured via a barrel phantom, across PET scanners. Our approach was validated using paired subject data, for which patients were imaged on multiple scanners. METHODS: In this study, three different PET scanners were evaluated: the Siemens Biograph Vision 600, Siemens Biograph molecular computed tomography (mCT), and Philips Gemini TF64. A total of five, eight, and five subjects were each scanned twice with [18F]-NAV4694 across Vision-mCT, mCT-Philips, and Vision-Philips scanner pairs. The Vision and mCT scans were reconstructed using various iterations, subsets, and post-reconstruction Gaussian smoothing, whereas only one reconstruction configuration was used for the Philips scans. The full-width at half-maximum (FWHM) of each reconstruction configuration was calculated using [18F]-filled barrel phantom scans with the Society of Nuclear Medicine and Molecular Imaging (SNMMI) phantom analysis toolkit. Regional SUVRs were calculated from 72 brain regions using the automated anatomical labelling atlas 3 (AAL3) atlas for each subject and reconstruction configuration. Statistical similarity between SUVRs was assessed using paired (within subject) t-tests for each pair of reconstructions across scanners; the higher the p-value, the greater the similarity between the SUVRs. RESULTS: Vision-mCT harmonization: Vision reconstruction with FWHM = 4.10 mm and mCT reconstruction with FWHM = 4.30 mm gave the maximal statistical similarity (maximum p-value) between regional SUVRs. Philips-mCT harmonization: The FWHM of the Philips reconstruction was 8.2 mm and the mCT reconstruction with the FWHM of 9.35 mm, which gave the maximal statistical similarity between regional SUVRs. Philips-Vision harmonization: The Vision reconstruction with an FWHM of 9.1 mm gave the maximal statistical similarity between regional SUVRs when compared with the Philips reconstruction of 8.2 mm and were selected as the harmonized for each scanner pair. CONCLUSION: Based on data obtained from three sets of participants, each scanned on a pair of PET scanners, it has been verified that using reconstruction configurations that produce matched-barrel, phantom spatial resolutions results in maximally harmonized Aß-PET quantitation between scanner pairs. This finding is encouraging for the use of PET scanners in multi-center trials or updates during longitudinal studies. Highlights: Question: Does the process of matching the barrel phantom-derived spatial resolution between scanners harmonize amyloid beta-standardized uptake value ratio (Aß-SUVR) quantitation? Pertinent findings: It has been validated that reconstruction pairs with matched barrel phantom-derived spatial resolution maximize the similarity between subjects paired Aß-PET (positron emission tomography) SUVR values recorded on two scanners. Implications for patient care: Harmonization between scanners in multi-center trials and PET camera updates in longitudinal studies can be achieved using a simple and efficient phantom measurement procedure, beneficial for the validity of Aß-PET quantitation measurements.

19.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353984

ABSTRACT

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Subject(s)
Aging , Brain , Humans , Aged , Female , Male , Middle Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , Aging/genetics , Aging/physiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Cohort Studies , Deep Learning
20.
Sci Rep ; 14(1): 4364, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388558

ABSTRACT

An inverse association between cancer and Alzheimer's disease (AD) has been demonstrated; however, the association between cancer and mild cognitive impairment (MCI), and the association between cancer and cognitive decline are yet to be clarified. The AIBL dataset was used to address these knowledge gaps. The crude and adjusted odds ratios for MCI/AD and cognitive decline were compared between participants with/without cancer (referred to as C+ and C- participants). A 37% reduction in odds for AD was observed in C+ participants compared to C- participants after adjusting for all confounders. The overall risk for MCI and AD in C+ participants was reduced by 27% and 31%, respectively. The odds of cognitive decline from MCI to AD was reduced by 59% in C+ participants after adjusting for all confounders. The risk of cognitive decline from MCI to AD was halved in C+ participants. The estimated mean change in Clinical Dementia Rating-Sum of boxes (CDR-SOB) score per year was 0.23 units/year higher in C- participants than in C+ participants. Overall, an inverse association between cancer and MCI/AD was observed in AIBL, which is in line with previous reports. Importantly, an inverse association between cancer and cognitive decline has also been identified.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neoplasms , Humans , Neuropsychological Tests , Australia/epidemiology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/psychology , Alzheimer Disease/epidemiology , Alzheimer Disease/psychology , Biomarkers , Life Style , Neoplasms/complications , Neoplasms/epidemiology , Disease Progression
SELECTION OF CITATIONS
SEARCH DETAIL