Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Article in English | MEDLINE | ID: mdl-38973695

ABSTRACT

Background: Allostatic load (AL) is the accumulation of physiological dysregulation attributed to repeated activation of the stress response over a lifetime. We assessed the utility of AL as a prognostic measure for high-risk benign breast biopsy pathology results. Method: Eligible patients were women 18 years or older, with a false-positive outpatient breast biopsy between January and December 2022 at a tertiary academic health center. AL was calculated using 12 variables representing four physiological systems: cardiovascular (pulse rate, systolic and diastolic blood pressures, total cholesterol, high-density lipoprotein, and low-density lipoprotein); metabolic (body mass index, albumin, and hemoglobin A1C); renal (creatinine and estimated glomerular filtration rate); and immune (white blood cell count). Multivariable logistic regression was used to assess the association between AL before biopsy and breast biopsy outcomes controlling for patients' sociodemographics. Results: In total, 170 women were included (mean age, 54.1 ± 12.9 years): 89.4% had benign and 10.6% had high-risk pathologies (radial scar/complex sclerosing lesion, atypical ductal or lobular hyperplasia, flat epithelial atypia, intraductal papilloma, or lobular carcinoma in-situ). A total of 56.5% were White, 24.7% Asian, and 17.1% other races. A total of 32.5% identified as Hispanic. The mean breast cancer risk score using the Tyrer-Cuzick model was 11.9 ± 7.0. In multivariable analysis, with every one unit increase in AL, the probability of high-risk pathology increased by 37% (odds ratio, 1.37; 95% confidence interval, 1.03, 1.81; p = 0.03). No significant association was seen between high-risk pathology and age, ethnicity, breast cancer risk, or area deprivation index. Conclusion: Our findings support that increased AL, a biological marker of stress, is associated with high-risk pathology among patients with false-positive breast biopsy results.

2.
J Am Coll Radiol ; 21(6S): S168-S202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823943

ABSTRACT

As the proportion of women diagnosed with invasive breast cancer increases, the role of imaging for staging and surveillance purposes should be determined based on evidence-based guidelines. It is important to understand the indications for extent of disease evaluation and staging, as unnecessary imaging can delay care and even result in adverse outcomes. In asymptomatic patients that received treatment for curative intent, there is no role for imaging to screen for distant recurrence. Routine surveillance with an annual 2-D mammogram and/or tomosynthesis is recommended to detect an in-breast recurrence or a new primary breast cancer in women with a history of breast cancer, and MRI is increasingly used as an additional screening tool in this population, especially in women with dense breasts. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Subject(s)
Breast Neoplasms , Evidence-Based Medicine , Neoplasm Invasiveness , Societies, Medical , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Humans , Female , United States , Neoplasm Invasiveness/diagnostic imaging , Neoplasm Staging , Mammography/standards , Magnetic Resonance Imaging/methods
3.
AJR Am J Roentgenol ; : 1-10, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38775433

ABSTRACT

BACKGROUND. Abbreviated breast MRI (AB-MRI) achieves a higher cancer detection rate (CDR) than digital breast tomosynthesis when applied for baseline (i.e., first-round) supplemental screening of individuals with dense breasts. Limited literature has evaluated subsequent (i.e., sequential) AB-MRI screening rounds. OBJECTIVE. This study aimed to compare outcomes between baseline and subsequent rounds of screening AB-MRI in individuals with dense breasts who otherwise had an average risk for breast cancer. METHODS. This retrospective study included patients with dense breasts who otherwise had an average risk for breast cancer and underwent AB-MRI for supplemental screening between December 20, 2016, and May 10, 2023. The clinical interpretations and results of recommended biopsies for AB-MRI examinations were extracted from the EMR. Baseline and subsequent-round AB-MRI examinations were compared. RESULTS. The final sample included 2585 AB-MRI examinations (2007 baseline and 578 subsequent-round examinations) performed for supplemental screening of 2007 women (mean age, 57.1 years old) with dense breasts. Of 2007 baseline examinations, 1658 (82.6%) were assessed as BI-RADS category 1 or 2, 171 (8.5%) as BI-RADS category 3, and 178 (8.9%) as BI-RADS category 4 or 5. Of 578 subsequent-round examinations, 533 (92.2%) were assessed as BI-RADS category 1 or 2, 20 (3.5%) as BI-RADS category 3, and 25 (4.3%) as BI-RADS category 4 or 5 (p < .001). The abnormal interpretation rate (AIR) was 17.4% (349/2007) for baseline examinations versus 7.8% (45/578) for subsequent-round examinations (p < .001). For baseline examinations, PPV2 was 21.3% (38/178), PPV3 was 26.6% (38/143), and the CDR was 18.9 cancers per 1000 examinations (38/2007). For subsequent-round examinations, PPV2 was 28.0% (7/25) (p = .45), PPV3 was 29.2% (7/24) (p = .81), and the CDR was 12.1 cancers per 1000 examinations (7/578) (p = .37). All 45 cancers diagnosed by baseline or subsequent-round AB-MRI were stage 0 or 1. Seven cancers diagnosed by subsequent-round AB-MRI had a mean interval of 872 ± 373 (SD) days since prior AB-MRI and node-negative status at surgical axillary evaluation; six had an invasive component, all measuring 1.2 cm or less. CONCLUSION. Subsequent rounds of AB-MRI screening of individuals with dense breasts had lower AIR than baseline examinations while maintaining a high CDR. All cancers detected by subsequent-round examinations were early-stage node-negative cancers. CLINICAL IMPACT. The findings support sequential AB-MRI for supplemental screening in individuals with dense breasts. Further investigations are warranted to optimize the screening interval.

4.
Radiol Artif Intell ; 5(6): e230304, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38074781
5.
PET Clin ; 18(4): 557-566, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37369615

ABSTRACT

Many novel PET radiotracers have demonstrated potential use in breast cancer. Although not currently approved for clinical use in the breast cancer population, these innovative imaging agents may one day play a role in the diagnosis, staging, management, and even treatment of breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Radiopharmaceuticals , Positron-Emission Tomography/methods , Positron Emission Tomography Computed Tomography/methods
6.
Commun Med (Lond) ; 3(1): 46, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997615

ABSTRACT

BACKGROUND: Early changes in breast intratumor heterogeneity during neoadjuvant chemotherapy may reflect the tumor's ability to adapt and evade treatment. We investigated the combination of precision medicine predictors of genomic and MRI data towards improved prediction of recurrence free survival (RFS). METHODS: A total of 100 women from the ACRIN 6657/I-SPY 1 trial were retrospectively analyzed. We estimated MammaPrint, PAM50 ROR-S, and p53 mutation scores from publicly available gene expression data and generated four, voxel-wise 3-D radiomic kinetic maps from DCE-MR images at both pre- and early-treatment time points. Within the primary lesion from each kinetic map, features of change in radiomic heterogeneity were summarized into 6 principal components. RESULTS: We identify two imaging phenotypes of change in intratumor heterogeneity (p < 0.01) demonstrating significant Kaplan-Meier curve separation (p < 0.001). Adding phenotypes to established prognostic factors, functional tumor volume (FTV), MammaPrint, PAM50, and p53 scores in a Cox regression model improves the concordance statistic for predicting RFS from 0.73 to 0.79 (p = 0.002). CONCLUSIONS: These results demonstrate an important step in combining personalized molecular signatures and longitudinal imaging data towards improved prognosis.


Early changes in tumor properties during treatment may tell us whether or not a patient's tumor is responding to treatment. Such changes may be seen on imaging. Here, changes in breast cancer properties are identified on imaging and are used in combination with gene markers to investigate whether response to treatment can be predicted using mathematical models. We demonstrate that tumor properties seen on imaging early on in treatment can help to predict patient outcomes. Our approach may allow clinicians to better inform patients about their prognosis and choose appropriate and effective therapies.

7.
Sci Data ; 9(1): 440, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35871247

ABSTRACT

Breast cancer is one of the most pervasive forms of cancer and its inherent intra- and inter-tumor heterogeneity contributes towards its poor prognosis. Multiple studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of having consistency in: a) data quality, b) quality of expert annotation of pathology, and c) availability of baseline results from computational algorithms. To address these limitations, here we propose the enhancement of the I-SPY1 data collection, with uniformly curated data, tumor annotations, and quantitative imaging features. Specifically, the proposed dataset includes a) uniformly processed scans that are harmonized to match intensity and spatial characteristics, facilitating immediate use in computational studies, b) computationally-generated and manually-revised expert annotations of tumor regions, as well as c) a comprehensive set of quantitative imaging (also known as radiomic) features corresponding to the tumor regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.


Subject(s)
Breast Neoplasms , Algorithms , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Magnetic Resonance Imaging
8.
Foods ; 11(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35454741

ABSTRACT

Underconsumption of dietary fiber and the milieu of chemicals with which it is associated is a health concern linked to the increasing global burden of chronic diseases. The benefits of fiber are partially attributed to modulation of the gut microbiota, whose composition and function depend on the amount and quality of microbiota-accessible substrates in the diet. However, not all types of fiber are equally accessible to the gut microbiota. Phaseolus vulgaris L., or common bean, is a food type rich in fiber as well as other prebiotics posing a great potential to positively impact diet-microbiota-host interactions. To elucidate the magnitude of bean's effects on the gut microbiota, increasing doses of common bean were administered in macronutrient-matched diet formulations. The microbial communities in the ceca of female and male mice were evaluated via 16S rRNA gene sequencing. As the bean dose increased, the Bacillota:Bacteroidota ratio (formerly referred to as the Firmicutes:Bacteroidetes ratio) was reduced and α-diversity decreased, whereas the community composition was distinctly different between the diet groups according to ß-diversity. These effects were more pronounced in female mice compared to male mice. Compositional analyses identified a dose-responsive bean-induced shift in microbial composition. With an increasing bean dose, Rikenellaceae, Bacteroides, and RF39, which are associated with health benefits, were enhanced. More taxa, however, were suppressed, among which were Allobaculum, Oscillospira, Dorea, and Ruminococcus, which are predominantly associated with chronic disease risk. Investigation of the origins of the dose dependent and biological sex differences in response to common bean consumption may provide insights into bean-gut microbiota-host interactions important to developing food-based precision approaches to chronic disease prevention and control.

10.
Radiol Imaging Cancer ; 4(1): e210070, 2022 01.
Article in English | MEDLINE | ID: mdl-35089089

ABSTRACT

Fluorine 18 (18F) fluorthanatrace (18F-FTT) is a PET radiotracer for imaging poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1), an important target for a class of drugs known as PARP inhibitors, or PARPi. This article describes the stepwise development of this radiotracer from its design and preclinical evaluation to the first-in-human imaging studies and the initial validation of 18F-FTT as an imaging-based biomarker for measuring PARP-1 expression levels in patients with breast and ovarian cancer. A detailed discussion on the preparation and submission of an exploratory investigational new drug application to the Food and Drug Administration is also provided. Additionally, this review highlights the need and future plans for identifying a commercialization strategy to overcome the major financial barriers that exist when conducting the multicenter clinical trials needed for approval in the new drug application process. The goal of this article is to provide a road map that scientists and clinicians can follow for the successful clinical translation of a PET radiotracer developed in an academic setting. Keywords: Molecular Imaging-Cancer, PET, Breast, Genital/Reproductive, Chemistry, Radiotracer Development, PARPi, 18F-FTT, Investigational New Drug © RSNA, 2022.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Female , Humans , Multicenter Studies as Topic , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Positron-Emission Tomography/methods , United States
11.
J Breast Imaging ; 4(4): 392-399, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-38416988

ABSTRACT

OBJECTIVE: To assess the frequency, management, and early outcomes of COVID-19 vaccine-related adenopathy on breast MRI. METHODS: This IRB-exempt retrospective study reviewed patients who underwent breast MRI following COVID-19 vaccine approval in the U.S. from December 14, 2020, to April 11, 2021 (N = 1912) and compared patients who underwent breast MRI the year prior to the pandemic, March 13, 2019, to March 12, 2020 (N = 5342). Study indication, patient age, date of study, date and type of vaccination(s), time difference between study and vaccinations, lymph node-specific and overall management recommendations, and outcomes of additional examinations were recorded. Differences in the final assessment categories between the subjects scanned pre-pandemic and post-vaccine were compared using the Fisher exact test. RESULTS: Vaccine-related adenopathy was mentioned in 67 breast MRI reports; only 1 in the pre-pandemic group. There were no clinically relevant differences in patient demographics between groups. There was a statistically significant increase in BI-RADS 0 assessments between the pre-pandemic and post-vaccine approval groups-0.8% (45/5342) versus 1.8% (34/1912) (P = 0.001) and BI-RADS 3 assessments-6.5% (348/5342) versus 9.2% (176/1912) (P < 0.0001). Of the 29 patients who underwent additional imaging (range, 2-94 days following MRI) and the 2 patients who underwent biopsy, 47% (31/66), none were found to have malignant adenopathy. CONCLUSION: COVID-19 vaccination is associated with transient axillary adenopathy of variable duration. This leads to additional imaging in women undergoing breast MRI, so far with benign outcomes, and this may affect audits of outcomes of MRI.

12.
Radiology ; 301(2): 295-308, 2021 11.
Article in English | MEDLINE | ID: mdl-34427465

ABSTRACT

Background Suppression of background parenchymal enhancement (BPE) is commonly observed after neoadjuvant chemotherapy (NAC) at contrast-enhanced breast MRI. It was hypothesized that nonsuppressed BPE may be associated with inferior response to NAC. Purpose To investigate the relationship between lack of BPE suppression and pathologic response. Materials and Methods A retrospective review was performed for women with menopausal status data who were treated for breast cancer by one of 10 drug arms (standard NAC with or without experimental agents) between May 2010 and November 2016 in the Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2, or I-SPY 2 TRIAL (NCT01042379). Patients underwent MRI at four points: before treatment (T0), early treatment (T1), interregimen (T2), and before surgery (T3). BPE was quantitatively measured by using automated fibroglandular tissue segmentation. To test the hypothesis effectively, a subset of examinations with BPE with high-quality segmentation was selected. BPE change from T0 was defined as suppressed or nonsuppressed for each point. The Fisher exact test and the Z tests of proportions with Yates continuity correction were used to examine the relationship between BPE suppression and pathologic complete response (pCR) in hormone receptor (HR)-positive and HR-negative cohorts. Results A total of 3528 MRI scans from 882 patients (mean age, 48 years ± 10 [standard deviation]) were reviewed and the subset of patients with high-quality BPE segmentation was determined (T1, 433 patients; T2, 396 patients; T3, 380 patients). In the HR-positive cohort, an association between lack of BPE suppression and lower pCR rate was detected at T2 (nonsuppressed vs suppressed, 11.8% [six of 51] vs 28.9% [50 of 173]; difference, 17.1% [95% CI: 4.7, 29.5]; P = .02) and T3 (nonsuppressed vs suppressed, 5.3% [two of 38] vs 27.4% [48 of 175]; difference, 22.2% [95% CI: 10.9, 33.5]; P = .003). In the HR-negative cohort, patients with nonsuppressed BPE had lower estimated pCR rate at all points, but the P values for the association were all greater than .05. Conclusions In hormone receptor-positive breast cancer, lack of background parenchymal enhancement suppression may indicate inferior treatment response. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Philpotts in this issue.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Chemotherapy, Adjuvant/methods , Contrast Media , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Neoadjuvant Therapy/methods , Adult , Aged , Breast/diagnostic imaging , Cohort Studies , Female , Humans , Middle Aged , Retrospective Studies , Treatment Outcome , Young Adult
13.
JCI Insight ; 6(8)2021 04 22.
Article in English | MEDLINE | ID: mdl-33884961

ABSTRACT

BACKGROUND[18F]FluorThanatrace ([18F]FTT) is a radiolabeled poly (adenosine diphosphate-ribose) polymerase inhibitor (PARPi) that enables noninvasive quantification of PARP with potential to serve as a biomarker for patient selection for PARPi therapy. Here we report for the first time to our knowledge noninvasive in vivo visualization of drug-target engagement during PARPi treatment.METHODSTwo single-arm, prospective, nonrandomized clinical trials were conducted at the University of Pennsylvania from May 2017 to March 2020. PARP expression in breast cancer was assessed in vivo via [18F]FTT PET before and after initiation of PARPi treatment and in vitro via [125I]KX1 (an analog of [18F]FTT) binding to surgically removed breast cancer.RESULTSThirteen patients had baseline [18F]FTT PET. Nine of these then had resection and in vitro evaluation of [18F]FTT uptake with an analog and uptake was blocked with PARPi. Of the other 4 patients, 3 had [18F]FTT PET uptake, and all had uptake blocked with treatment with a therapeutic PARPi. Initial in vivo [18F]FTT tumor uptake ranged from undetectable to robust. Following initiation of PARPi therapy, [18F]FTT uptake was not detectable above background in all cases. In vitro tumor treatment with a PARPi resulted in 82% reduction in [125I]KX1 binding.CONCLUSION[18F]FTT noninvasively quantifies PARP-1 expression. Early results indicate ability to visualize PARPi drug-target engagement in vivo and suggest the utility of further study to test [18F]FTT PET as a predictive and pharmacodynamic biomarker.TRIAL REGISTRATIONClinicalTrials.gov identifiers NCT03083288 and NCT03846167.FUNDINGMetavivor Translational Research Award, Susan G. Komen for the Cure (CCR 16376362), Department of Defense BC190315, and Abramson Cancer Center Breakthrough Bike Challenge.


Subject(s)
Breast Neoplasms/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Lymph Nodes/diagnostic imaging , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Radiopharmaceuticals , Spinal Neoplasms/diagnostic imaging , Adult , Aged , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Lymph Nodes/metabolism , Middle Aged , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Positron Emission Tomography Computed Tomography , Spinal Neoplasms/drug therapy , Spinal Neoplasms/metabolism , Spinal Neoplasms/secondary
14.
Radiographics ; 41(3): 645-664, 2021.
Article in English | MEDLINE | ID: mdl-33739893

ABSTRACT

Breast MRI is the most sensitive modality for the detection of breast cancer. However, false-negative cases may occur, in which the cancer is not visualized at MRI and is instead diagnosed with another imaging modality. The authors describe the causes of false-negative breast MRI results, which can be categorized broadly as secondary to perceptual errors or cognitive errors, or nonvisualization secondary to nonenhancement of the tumor. Tips and strategies to avoid these errors are discussed. Perceptual errors occur when an abnormality is not prospectively identified, yet the examination is technically adequate. Careful development of thorough search patterns is critical to avoid these errors. Cognitive errors occur when an abnormality is identified but misinterpreted or mischaracterized as benign. The radiologist may avoid these errors by utilizing all available prior examinations for comparison, viewing images in all planes to better assess the margins and shapes of abnormalities, and appropriately integrating all available information from the contrast-enhanced, T2-weighted, and T1-weighted images as well as the clinical history. Despite this, false-negative cases are inevitable, as certain subtypes of breast cancer, including ductal carcinoma in situ, invasive lobular carcinoma, and certain well-differentiated invasive cancers, may demonstrate little to no enhancement at MRI, owing to differences in angiogenesis and neovascularity. MRI is a valuable diagnostic tool in breast imaging. However, MRI should continue to be used as a complementary modality, with mammography and US, in the detection of breast cancer. ©RSNA, 2021.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Breast , Breast Neoplasms/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Mammography , Sensitivity and Specificity
15.
J Breast Imaging ; 3(1): 44-56, 2021.
Article in English | MEDLINE | ID: mdl-33543122

ABSTRACT

OBJECTIVE: The A6702 multisite trial confirmed that apparent diffusion coefficient (ADC) measures can improve breast MRI accuracy and reduce unnecessary biopsies, but also found that technical issues rendered many lesions non-evaluable on diffusion-weighted imaging (DWI). This secondary analysis investigated factors affecting lesion evaluability and impact on diagnostic performance. METHODS: The A6702 protocol was IRB-approved at 10 institutions; participants provided informed consent. In total, 103 women with 142 MRI-detected breast lesions (BI-RADS assessment category 3, 4, or 5) completed the study. DWI was acquired at 1.5T and 3T using a four b-value, echo-planar imaging sequence. Scans were reviewed for multiple quality factors (artifacts, signal-to-noise, misregistration, and fat suppression); lesions were considered non-evaluable if there was low confidence in ADC measurement. Associations of lesion evaluability with imaging and lesion characteristics were determined. Areas under the receiver operating characteristic curves (AUCs) were compared using bootstrapping. RESULTS: Thirty percent (42/142) of lesions were non-evaluable on DWI; 23% (32/142) with image quality issues, 7% (10/142) with conspicuity and/or localization issues. Misregistration was the only factor associated with non-evaluability (P = 0.001). Smaller (≤10 mm) lesions were more commonly non-evaluable than larger lesions (p <0.03), though not significant after multiplicity correction. The AUC for differentiating benign and malignant lesions increased after excluding non-evaluable lesions, from 0.61 (95% CI: 0.50-0.71) to 0.75 (95% CI: 0.65-0.84). CONCLUSION: Image quality remains a technical challenge in breast DWI, particularly for smaller lesions. Protocol optimization and advanced acquisition and post-processing techniques would help to improve clinical utility.

17.
Radiology ; 298(1): 60-70, 2021 01.
Article in English | MEDLINE | ID: mdl-33201788

ABSTRACT

Background The Eastern Cooperative Oncology Group and American College of Radiology Imaging Network Cancer Research Group A6702 multicenter trial helped confirm the potential of diffusion-weighted MRI for improving differential diagnosis of suspicious breast abnormalities and reducing unnecessary biopsies. A prespecified secondary objective was to explore the relative value of different approaches for quantitative assessment of lesions at diffusion-weighted MRI. Purpose To determine whether alternate calculations of apparent diffusion coefficient (ADC) can help further improve diagnostic performance versus mean ADC values alone for analysis of suspicious breast lesions at MRI. Materials and Methods This prospective trial (ClinicalTrials.gov identifier: NCT02022579) enrolled consecutive women (from March 2014 to April 2015) with a Breast Imaging Reporting and Data System category of 3, 4, or 5 at breast MRI. All study participants underwent standardized diffusion-weighted MRI (b = 0, 100, 600, and 800 sec/mm2). Centralized ADC measures were performed, including manually drawn whole-lesion and hotspot regions of interest, histogram metrics, normalized ADC, and variable b-value combinations. Diagnostic performance was estimated by using the area under the receiver operating characteristic curve (AUC). Reduction in biopsy rate (maintaining 100% sensitivity) was estimated according to thresholds for each ADC metric. Results Among 107 enrolled women, 81 lesions with outcomes (28 malignant and 53 benign) in 67 women (median age, 49 years; interquartile range, 41-60 years) were analyzed. Among ADC metrics tested, none improved diagnostic performance versus standard mean ADC (AUC, 0.59-0.79 vs AUC, 0.75; P = .02-.84), and maximum ADC had worse performance (AUC, 0.52; P < .001). The 25th-percentile ADC metric provided the best performance (AUC, 0.79; 95% CI: 0.70, 0.88), and a threshold using median ADC provided the greatest reduction in biopsy rate of 23.9% (95% CI: 14.8, 32.9; 16 of 67 BI-RADS category 4 and 5 lesions). Nonzero minimum b value (100, 600, and 800 sec/mm2) did not improve the AUC (0.74; P = .28), and several combinations of two b values (0 and 600, 100 and 600, 0 and 800, and 100 and 800 sec/mm2; AUC, 0.73-0.76) provided results similar to those seen with calculations of four b values (AUC, 0.75; P = .17-.87). Conclusion Mean apparent diffusion coefficient calculated with a two-b-value acquisition is a simple and sufficient diffusion-weighted MRI metric to augment diagnostic performance of breast MRI compared with more complex approaches to apparent diffusion coefficient measurement. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Breast Neoplasms/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Adult , Aged , Breast/diagnostic imaging , Diagnosis, Differential , Female , Humans , Middle Aged , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity , Societies, Medical , Young Adult
18.
Clin Imaging ; 70: 18-24, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33120285

ABSTRACT

PURPOSE: To compare the role of MR for assessment of extent of disease in women newly diagnosed with breast cancer imaged with digital mammography (DM) alone versus digital breast tomosynthesis (DBT). METHODS: Retrospective review was conducted of 401 consecutive breast MR exams (10/1/2013-7/31/2015) from women who underwent preoperative MR for newly diagnosed breast cancer by either DM or DBT, leaving 388 exams (201 DM and 187 DBT). MR detection of additional, otherwise occult, disease was stratified by modality, breast density, and background parenchymal enhancement. A true-positive finding was defined as malignancy in the ipsilateral-breast >2 cm away from the index-lesion or in the contralateral breast. RESULTS: 50 additional malignancies were detected in 388 exams (12.9%), 37 ipsilateral and 13 contralateral. There was no difference in the MR detection of additional disease in women imaged by either DM versus DBT (p = 0.53). In patients with DM, there was no significant difference in the rate of MR additional cancer detection in dense versus non-dense breasts (p = 0.790). However, in patients with DBT, MR detected significantly more additional sites of malignancy in dense compared to non-dense breasts (p = 0.017). There was no difference in false-positive MR exams (p = 0.470) for DM versus DBT. For both DM and DBT cohorts, higher MR background parenchymal enhancement was associated with higher false-positive (p = 0.040) but no significant difference in true-positive exams. CONCLUSIONS: Among patients with DBT imaging at cancer diagnosis, women with dense breasts appear to benefit more from preoperative MR than non-dense women. In women imaged only with DM, MR finds additional malignancy across all breast densities.


Subject(s)
Breast Density , Breast Neoplasms , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Mammography , Retrospective Studies
19.
NPJ Breast Cancer ; 6(1): 63, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33298938

ABSTRACT

Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype.

20.
J Appl Clin Med Phys ; 21(11): 188-194, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33089949

ABSTRACT

OBJECTIVE: To assess the diagnostic performance of breast magnetic resonance (MR) imaging as a function of gadolinium contrast dose using a retrospective reader study. MATERIAL AND METHODS: IRB approval was obtained prior to the start of this study and was HIPAA compliant. One-hundred and fifty MR breast examinations were included that were acquired between January 2001 and December 2006. Seventy-five patients received contrast doses (gadopentetate dimeglumine) by weight of 0.10 mmol/kg and 75 patients were imaged using fixed volumes of 20 ml. The images were assessed by two radiologists with performance calculated for each reader as well as a combined assessment. Dose response was measured by comparing performance between cases binned by dose: <=0.10; >0.10; and >0.13 mmol/kg. Statistical significance was calculated using a one-sided Z-test for differences in proportions with interobserver agreement calculated using Cohen's kappa statistics. RESULTS: In the combined reader assessment with equivocal lesions classified as negative, sensitivity rose from 66% (19/29) to 92% (24/26, P < 0.01) and 95% (18/19, P < 0.01) with the specificity also increasing from 65% (32/49) to 87% (40/46, P < 0.01) and 86% (32/37, P = 0.01) corresponding to doses <=0.10, >0.10, >0.13 mmol/kg. With equivocal lesions classified as positive, sensitivity rose from 79% (23/29) to 92% (24/26, P < 0.10) and 95% (18/19, P < 0.10) Specificity also increased from 53% (26/49) to 72% (33/46, P < 0.05) and 70% (26/37, P = 0.05) with increasing dose. Interobserver agreement also improved at the higher doses.


Subject(s)
Meglumine , Organometallic Compounds , Contrast Media , Gadolinium DTPA , Humans , Magnetic Resonance Imaging , Retrospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL