Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Parasitol Drugs Drug Resist ; 25: 100537, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38810336

ABSTRACT

Target-based approaches have traditionally been used in the search for new anti-infective molecules. Target selection process, a critical step in Drug Discovery, identifies targets that are essential to establish or maintain the infection, tractable to be susceptible for inhibition, selective towards their human ortholog and amenable for large scale purification and high throughput screening. The work presented herein validates the Plasmodium falciparum mRNA 5' triphosphatase (PfPRT1), the first enzymatic step to cap parasite nuclear mRNAs, as a candidate target for the development of new antimalarial compounds. mRNA capping is essential to maintain the integrity and stability of the messengers, allowing their translation. PfPRT1 has been identified as a member of the tunnel, metal dependent mRNA 5' triphosphatase family which differs structurally and mechanistically from human metal independent mRNA 5' triphosphatase. In the present study the essentiality of PfPRT1 was confirmed and molecular biology tools and methods for target purification, enzymatic assessment and target engagement were developed, with the goal of running a future high throughput screening to discover PfPRT1 inhibitors.

2.
Science ; 381(6657): 533-540, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37535741

ABSTRACT

Malaria control demands the development of a wide range of complementary strategies. We describe the properties of a naturally occurring, non-genetically modified symbiotic bacterium, Delftia tsuruhatensis TC1, which was isolated from mosquitoes incapable of sustaining the development of Plasmodium falciparum parasites. D. tsuruhatensis TC1 inhibits early stages of Plasmodium development and subsequent transmission by the Anopheles mosquito through secretion of a small-molecule inhibitor. We have identified this inhibitor to be the hydrophobic molecule harmane. We also found that, on mosquito contact, harmane penetrates the cuticle, inhibiting Plasmodium development. D. tsuruhatensis TC1 stably populates the mosquito gut, does not impose a fitness cost on the mosquito, and inhibits Plasmodium development for the mosquito's life. Contained field studies in Burkina Faso and modeling showed that D. tsuruhatensis TC1 has the potential to complement mosquito-targeted malaria transmission control.


Subject(s)
Anopheles , Delftia , Host-Parasite Interactions , Malaria, Falciparum , Plasmodium falciparum , Animals , Anopheles/microbiology , Malaria, Falciparum/microbiology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Plasmodium falciparum/microbiology , Plasmodium falciparum/physiology , Delftia/physiology , Symbiosis , Humans
3.
Molecules ; 27(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35889319

ABSTRACT

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is one of the most devastating infectious agents in the world. Chemical-genetic characterization through in vitro evolution combined with whole genome sequencing analysis was used identify novel drug targets and drug resistance genes in Mtb associated with its intracellular growth in human macrophages. We performed a genome analysis of 53 Mtb mutants resistant to 15 different hit compounds. We found nonsynonymous mutations/indels in 30 genes that may be associated with drug resistance acquisitions. Beyond confirming previously identified drug resistance mechanisms such as rpoB and lead targets reported in novel anti-tuberculosis drug screenings such as mmpL3, ethA, and mbtA, we have discovered several unrecognized candidate drug targets including prrB. The exploration of the Mtb chemical mutant genomes could help novel drug discovery and the structural biology of compounds and associated mechanisms of action relevant to tuberculosis treatment.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Humans , INDEL Mutation , Macrophages/microbiology , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology
4.
Trials ; 23(1): 559, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35804454

ABSTRACT

BACKGROUND: Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans that affects skin, soft tissues, and bones, causing long-term morbidity, stigma, and disability. The recommended treatment for BU requires 8 weeks of daily rifampicin and clarithromycin together with wound care, physiotherapy, and sometimes tissue grafting and surgery. Recovery can take up to 1 year, and it may pose an unbearable financial burden to the household. Recent in vitro studies demonstrated that beta-lactams combined with rifampicin and clarithromycin are synergistic against M. ulcerans. Consequently, inclusion of amoxicillin/clavulanate in a triple oral therapy may potentially improve and shorten the healing process. The BLMs4BU trial aims to assess whether co-administration of amoxicillin/clavulanate with rifampicin and clarithromycin could reduce BU treatment from 8 to 4 weeks. METHODS: We propose a randomized, controlled, open-label, parallel-group, non-inferiority phase II, multi-centre trial in Benin with participants stratified according to BU category lesions and randomized to two oral regimens: (i) Standard: rifampicin plus clarithromycin therapy for 8 weeks; and (ii) Investigational: standard plus amoxicillin/clavulanate for 4 weeks. The primary efficacy outcome will be lesion healing without recurrence and without excision surgery 12 months after start of treatment (i.e. cure rate). Seventy clinically diagnosed BU patients will be recruited per arm. Patients will be followed up over 12 months and managed according to standard clinical care procedures. Decision for excision surgery will be delayed to 14 weeks after start of treatment. Two sub-studies will also be performed: a pharmacokinetic and a microbiology study. DISCUSSION: If successful, this study will create a new paradigm for BU treatment, which could inform World Health Organization policy and practice. A shortened, highly effective, all-oral regimen will improve care of BU patients and will lead to a decrease in hospitalization-related expenses and indirect and social costs and improve treatment adherence. This trial may also provide information on treatment shortening strategies for other mycobacterial infections (tuberculosis, leprosy, or non-tuberculous mycobacteria infections). TRIAL REGISTRATION: ClinicalTrials.gov NCT05169554 . Registered on 27 December 2021.


Subject(s)
Anti-Bacterial Agents , Buruli Ulcer , Amoxicillin-Potassium Clavulanate Combination/therapeutic use , Anti-Bacterial Agents/therapeutic use , Benin , Buruli Ulcer/drug therapy , Clarithromycin/therapeutic use , Clinical Trials, Phase II as Topic , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Rifampin/therapeutic use , Treatment Outcome
5.
Sci Transl Med ; 14(643): eaaz6280, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35507672

ABSTRACT

The sensitivity of Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB), to antibiotic prodrugs is dependent on the efficacy of the activation process that transforms the prodrugs into their active antibacterial moieties. Various oxidases of M. tuberculosis have the potential to activate the prodrug ethionamide. Here, we used medicinal chemistry coupled with a phenotypic assay to select the N-acylated 4-phenylpiperidine compound series. The lead compound, SMARt751, interacted with the transcriptional regulator VirS of M. tuberculosis, which regulates the mymA operon encoding a monooxygenase that activates ethionamide. SMARt751 boosted the efficacy of ethionamide in vitro and in mouse models of acute and chronic TB. SMARt751 also restored full efficacy of ethionamide in mice infected with M. tuberculosis strains carrying mutations in the ethA gene, which cause ethionamide resistance in the clinic. SMARt751 was shown to be safe in tests conducted in vitro and in vivo. A model extrapolating animal pharmacokinetic and pharmacodynamic parameters to humans predicted that as little as 25 mg of SMARt751 daily would allow a fourfold reduction in the dose of ethionamide administered while retaining the same efficacy and reducing side effects.


Subject(s)
Mycobacterium tuberculosis , Prodrugs , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Ethionamide/chemistry , Ethionamide/pharmacology , Ethionamide/therapeutic use , Mice , Prodrugs/pharmacology , Prodrugs/therapeutic use , Tuberculosis/drug therapy
6.
ACS Infect Dis ; 7(1): 141-152, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33319550

ABSTRACT

MmpL3, an essential mycolate transporter in the inner membrane of Mycobacterium tuberculosis (Mtb), has been identified as a target of multiple, chemically diverse antitubercular drugs. However, several of these molecules seem to have secondary targets and inhibit bacterial growth by more than one mechanism. Here, we describe a cell-based assay that utilizes two-way regulation of MmpL3 expression to readily identify MmpL3-specific inhibitors. We successfully used this assay to identify a novel guanidine-based MmpL3 inhibitor from a library of 220 compounds that inhibit growth of Mtb by largely unknown mechanisms. We furthermore identified inhibitors of cytochrome bc1-aa3 oxidase as one class of off-target hits in whole-cell screens for MmpL3 inhibitors and report a novel sulfanylacetamide as a potential QcrB inhibitor.


Subject(s)
Bacterial Proteins , Membrane Transport Proteins , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Membrane Transport Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Mycolic Acids
7.
Article in English | MEDLINE | ID: mdl-31182528

ABSTRACT

This first-time-in-human (FTIH) study evaluated the safety, tolerability, pharmacokinetics, and food effect of single and repeat oral doses of GSK3036656, a leucyl-tRNA synthetase inhibitor. In part A, GSK3036656 single doses of 5 mg (fed and fasted), 15 mg, and 25 mg and placebo were administered. In part B, repeat doses of 5 and 15 mg and placebo were administered for 14 days once daily. GSK3036656 showed dose-proportional increase following single-dose administration and after dosing for 14 days. The maximum concentration of drug in serum (Cmax) and area under the concentration-time curve from 0 h to the end of the dosing period (AUC0-τ) showed accumulation with repeated administration of approximately 2- to 3-fold. Pharmacokinetic parameters were not altered in the presence of food. Unchanged GSK3036656 was the only drug-related component detected in plasma and accounted for approximately 90% of drug-related material in urine. Based on total drug-related material detected in urine, the minimum absorbed doses after single (25 mg) and repeat (15 mg) dosing were 50 and 78%, respectively. Unchanged GSK3036656 represented at least 44% and 71% of the 25- and 15-mg doses, respectively. Clinical trial simulations were performed to guide dose escalation during the FTIH study and to predict the GSK3036656 dose range that produces the highest possible early bactericidal activity (EBA0-14) in the prospective phase II trial, with consideration of the predefined exposure limit. GSK3036656 was well tolerated after single and multiple doses, with no reports of serious adverse events. (This study has been registered at ClinicalTrials.gov under identifier NCT03075410.).


Subject(s)
Antitubercular Agents/pharmacology , Boron Compounds/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacology , Tuberculosis/drug therapy , Administration, Oral , Adolescent , Adult , Antitubercular Agents/administration & dosage , Antitubercular Agents/adverse effects , Antitubercular Agents/pharmacokinetics , Area Under Curve , Boron Compounds/administration & dosage , Boron Compounds/adverse effects , Boron Compounds/pharmacokinetics , Double-Blind Method , Enzyme Inhibitors/pharmacology , Female , Food , Heterocyclic Compounds, 2-Ring/administration & dosage , Heterocyclic Compounds, 2-Ring/adverse effects , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Humans , Leucine-tRNA Ligase/antagonists & inhibitors , Male , Middle Aged , Models, Biological , Placebos , Young Adult
8.
ACS Infect Dis ; 5(8): 1433-1445, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31184461

ABSTRACT

The historical view of ß-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a ß-lactamase inhibitor. However, most antimycobacterial ß-lactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 ß-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a ß-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A ß-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent ß-lactam. Thus, the antimycobacterial activity of pyrithione-containing cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.


Subject(s)
Antitubercular Agents/pharmacology , Cephalosporins/pharmacology , DNA Replication , Mycobacterium tuberculosis/drug effects , Pyridines/pharmacology , Thiones/pharmacology , Administration, Oral , Animals , Antitubercular Agents/administration & dosage , Callithrix , Cephalosporins/administration & dosage , Drug Discovery , Female , Hep G2 Cells , High-Throughput Screening Assays , Humans , Mice , Mycobacterium tuberculosis/physiology , Pyridines/administration & dosage , Thiones/administration & dosage
9.
Sci Adv ; 5(3): eaav2104, 2019 03.
Article in English | MEDLINE | ID: mdl-30906866

ABSTRACT

The stringent response enables Mycobacterium tuberculosis (Mtb) to shut down its replication and metabolism under various stresses. Here we show that Mtb lacking the stringent response enzyme RelMtb was unable to slow its replication rate during nutrient starvation. Metabolomics analysis revealed that the nutrient-starved relMtb -deficient strain had increased metabolism similar to that of exponentially growing wild-type bacteria in nutrient-rich broth, consistent with an inability to enter quiescence. Deficiency of relMtb increased the susceptibility of mutant bacteria to killing by isoniazid during nutrient starvation and in the lungs of chronically infected mice. We screened a pharmaceutical library of over 2 million compounds for inhibitors of RelMtb and showed that the lead compound X9 was able to directly kill nutrient-starved M. tuberculosis and enhanced the killing activity of isoniazid. Inhibition of RelMtb is a promising approach to target M. tuberculosis persisters, with the potential to shorten the duration of TB treatment.


Subject(s)
Bacterial Proteins/genetics , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Tuberculosis/genetics , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Crystallography, X-Ray , DNA Replication/drug effects , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/chemistry , GTP Pyrophosphokinase/antagonists & inhibitors , GTP Pyrophosphokinase/chemistry , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Isoniazid/chemistry , Isoniazid/pharmacology , Mice , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Protein Conformation , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis/pathology
10.
PLoS Negl Trop Dis ; 13(1): e0007126, 2019 01.
Article in English | MEDLINE | ID: mdl-30689630

ABSTRACT

The potential use of clinically approved beta-lactams for Buruli ulcer (BU) treatment was investigated with representative classes analyzed in vitro for activity against Mycobacterium ulcerans. Beta-lactams tested were effective alone and displayed a strong synergistic profile in combination with antibiotics currently used to treat BU, i.e. rifampicin and clarithromycin; this activity was further potentiated in the presence of the beta-lactamase inhibitor clavulanate. In addition, quadruple combinations of rifampicin, clarithromycin, clavulanate and beta-lactams resulted in multiplicative reductions in their minimal inhibitory concentration (MIC) values. The MIC of amoxicillin against a panel of clinical isolates decreased more than 200-fold within this quadruple combination. Amoxicillin/clavulanate formulations are readily available with clinical pedigree, low toxicity, and orally and pediatric available; thus, supporting its potential inclusion as a new anti-BU drug in current combination therapies.


Subject(s)
Buruli Ulcer/drug therapy , Mycobacterium ulcerans/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Administration, Oral , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Buruli Ulcer/microbiology , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Clavulanic Acid/pharmacology , Clavulanic Acid/therapeutic use , Dose-Response Relationship, Drug , Drug Synergism , Drug Therapy, Combination , Humans , Microbial Sensitivity Tests , Mycobacterium ulcerans/enzymology , Rifampin/pharmacology , Rifampin/therapeutic use , beta-Lactamase Inhibitors/therapeutic use
11.
Sci Rep ; 8(1): 13473, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194385

ABSTRACT

Nitro-substituted 1,3-benzothiazinones (nitro-BTZs) are mechanism-based covalent inhibitors of Mycobacterium tuberculosis decaprenylphosphoryl-ß-D-ribose-2'-oxidase (DprE1) with strong antimycobacterial properties. We prepared a number of oxidized and reduced forms of nitro-BTZs to probe the mechanism of inactivation of the enzyme and to identify opportunities for further chemistry. The kinetics of inactivation of DprE1 was examined using an enzymatic assay that monitored reaction progress up to 100 min, permitting compound ranking according to kinact/Ki values. The side-chain at the 2-position and heteroatom identity at the 1-position of the BTZs were found to be important for inhibitory activity. We obtained crystal structures with several compounds covalently bound. The data suggest that steps upstream from the covalent end-points are likely the key determinants of potency and reactivity. The results of protein mass spectrometry using a 7-chloro-nitro-BTZ suggest that nucleophilic reactions at the 7-position do not operate and support a previously proposed mechanism in which BTZ activation by a reduced flavin intermediate is required. Unexpectedly, a hydroxylamino-BTZ showed time-dependent inhibition and mass spectrometry corroborated that this hydroxylamino-BTZ is a mechanism-based suicide inhibitor of DprE1. With this BTZ derivative, we propose a new covalent mechanism of inhibition of DprE1 that takes advantage of the oxidation cycle of the enzyme.


Subject(s)
Alcohol Oxidoreductases , Antitubercular Agents/chemistry , Bacterial Proteins , Enzyme Inhibitors/chemistry , Mycobacterium tuberculosis/enzymology , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Crystallography, X-Ray , Mass Spectrometry
12.
Sci Rep ; 8(1): 12664, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30140040

ABSTRACT

Mycobacterium tuberculosis, the causative agent of tuberculosis, has surpassed HIV as the leading cause of death due to an infectious disease worldwide, being responsible for more than 1.5 million deaths in low-income countries. In response to a pandemic threat by drug resistant strains, the tuberculosis research community is searching for new chemical entities with novel mechanisms of action to avoid drug resistance and shorten treatment regimens using combinatorial chemotherapy. Herein, we have identified several novel chemical scaffolds, GSK97C (spiro-oxazolidin-2-one), GSK93A (2-amino-1,3-thiazole, GSK85A and GSK92A (enamides), which target M. tuberculosis aspartyl-tRNA synthetase (Mt-AspRS), an essential component of the protein synthesis machinery of tuberculosis, using a whole-cell target-based screening strategy against a genetically modified Mycobacterium bovis BCG strain. We also provide further evidence of protein inhibition and inhibitor profiling through a classical aminoacylation reaction and a tRNA-independent assay, respectively. Altogether, our results have identified a number of hit new molecules with novel mechanism of action for further development through medicinal chemistry as hits and leads.


Subject(s)
Antitubercular Agents/pharmacology , Aspartate-tRNA Ligase/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Aspartate-tRNA Ligase/antagonists & inhibitors , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Microbial Sensitivity Tests , Mycobacterium bovis/drug effects , Mycobacterium bovis/enzymology
14.
Int J Parasitol Drugs Drug Resist ; 8(2): 295-303, 2018 08.
Article in English | MEDLINE | ID: mdl-29775797

ABSTRACT

Phenotypic screening has produced most of the new chemical entities currently in clinical development for malaria, plus many lead compounds active against Plasmodium falciparum asexual stages. However, lack of knowledge about the mode of action of these compounds delays and may even hamper their future development. Identifying the mode of action of the inhibitors greatly helps to prioritise compounds for further development as novel antimalarials. Here we describe a whole-cell method to detect inhibitors of the mitochondrial electron transport chain, using oxygen consumption as high throughput readout in 384-well plate format. The usefulness of the method has been confirmed with the Tres Cantos Antimalarial Compound Set (TCAMS). The assay identified 124 respiratory inhibitors in TCAMS, seven of which were novel anti-plasmodial chemical structures never before described as mitochondrial inhibitors.


Subject(s)
Antimalarials/pharmacology , Drug Evaluation, Preclinical/methods , Mitochondria/drug effects , Plasmodium falciparum/drug effects , Drug Discovery/methods , Drug Evaluation, Preclinical/instrumentation , Electron Transport Chain Complex Proteins/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum , Oxygen/metabolism , Plasmodium falciparum/cytology
15.
ChemMedChem ; 13(7): 672-677, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29399991

ABSTRACT

Our findings reported herein provide support for the benefits of including functional group complexity (FGC) within fragments when screening against protein targets such as Mycobacterium tuberculosis InhA. We show that InhA fragment actives with FGC maintained their binding pose during elaboration. Furthermore, weak fragment hits with functional group handles also allowed for facile fragment elaboration to afford novel and potent InhA inhibitors with good ligand efficiency metrics for optimization.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Mycobacterium tuberculosis/enzymology , Oxidoreductases/antagonists & inhibitors , Small Molecule Libraries/chemistry , Antitubercular Agents/chemical synthesis , Bacterial Proteins/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Ligands , Models, Molecular , Molecular Structure , Oxidoreductases/chemistry , Small Molecule Libraries/chemical synthesis , Surface Plasmon Resonance
16.
J Med Chem ; 60(19): 8011-8026, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28953378

ABSTRACT

There is an urgent need to develop new and safer antitubercular agents that possess a novel mode of action. We synthesized and evaluated a novel series of 3-aminomethyl 4-halogen benzoxaboroles as Mycobacterium tuberculosis (Mtb) leucyl-tRNA synthetase (LeuRS) inhibitors. A number of Mtb LeuRS inhibitors were identified that demonstrated good antitubercular activity with high selectivity over human mitochondrial and cytoplasmic LeuRS. Further evaluation of these Mtb LeuRS inhibitors by in vivo pharmacokinetics (PK) and murine tuberculosis (TB) efficacy models led to the discovery of GSK3036656 (abbreviated as GSK656). This molecule shows potent inhibition of Mtb LeuRS (IC50 = 0.20 µM) and in vitro antitubercular activity (Mtb H37Rv MIC = 0.08 µM). Additionally, it is highly selective for the Mtb LeuRS enzyme with IC50 of >300 µM and 132 µM for human mitochondrial LeuRS and human cytoplasmic LeuRS, respectively. In addition, it exhibits remarkable PK profiles and efficacy against Mtb in mouse TB infection models with superior tolerability over initial leads. This compound has been progressed to clinical development for the treatment of tuberculosis.


Subject(s)
Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Boron Compounds/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacology , Leucine-tRNA Ligase/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Animals , Antitubercular Agents/pharmacokinetics , Boron Compounds/chemical synthesis , Boron Compounds/pharmacokinetics , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Female , Heterocyclic Compounds, 2-Ring/chemical synthesis , Humans , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship , Substrate Specificity
17.
Nat Commun ; 8: 16081, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28714473

ABSTRACT

The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , Gene Library , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries , Staphylococcus aureus/drug effects , Acinetobacter baumannii/metabolism , Drug Evaluation, Preclinical , Molecular Targeted Therapy , Mycobacterium tuberculosis/metabolism , Staphylococcus aureus/metabolism
18.
Sci Rep ; 6: 34293, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27678056

ABSTRACT

While modern cephalosporins developed for broad spectrum antibacterial activities have never been pursued for tuberculosis (TB) therapy, we identified first generation cephalosporins having clinically relevant inhibitory concentrations, both alone and in synergistic drug combinations. Common chemical patterns required for activity against Mycobacterium tuberculosis were identified using structure-activity relationships (SAR) studies. Numerous cephalosporins were synergistic with rifampicin, the cornerstone drug for TB therapy, and ethambutol, a first-line anti-TB drug. Synergy was observed even under intracellular growth conditions where beta-lactams typically have limited activities. Cephalosporins and rifampicin were 4- to 64-fold more active in combination than either drug alone; however, limited synergy was observed with rifapentine or rifabutin. Clavulanate was a key synergistic partner in triple combinations. Cephalosporins (and other beta-lactams) together with clavulanate rescued the activity of rifampicin against a rifampicin resistant strain. Synergy was not due exclusively to increased rifampicin accumulation within the mycobacterial cells. Cephalosporins were also synergistic with new anti-TB drugs such as bedaquiline and delamanid. Studies will be needed to validate their in vivo activities. However, the fact that cephalosporins are orally bioavailable with good safety profiles, together with their anti-mycobacterial activities reported here, suggest that they could be repurposed within new combinatorial TB therapies.

19.
EBioMedicine ; 8: 291-301, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27428438

ABSTRACT

Despite being one of the first antitubercular agents identified, isoniazid (INH) is still the most prescribed drug for prophylaxis and tuberculosis (TB) treatment and, together with rifampicin, the pillars of current chemotherapy. A high percentage of isoniazid resistance is linked to mutations in the pro-drug activating enzyme KatG, so the discovery of direct inhibitors (DI) of the enoyl-ACP reductase (InhA) has been pursued by many groups leading to the identification of different enzyme inhibitors, active against Mycobacterium tuberculosis (Mtb), but with poor physicochemical properties to be considered as preclinical candidates. Here, we present a series of InhA DI active against multidrug (MDR) and extensively (XDR) drug-resistant clinical isolates as well as in TB murine models when orally dosed that can be a promising foundation for a future treatment.


Subject(s)
Antitubercular Agents/pharmacology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Animals , Antitubercular Agents/chemistry , Binding Sites , Catalytic Domain , Disease Models, Animal , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/genetics , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Enzyme Inhibitors/chemistry , Female , Humans , Mice , Microbial Sensitivity Tests , Microsomes , Models, Molecular , Mutation , Mycobacterium tuberculosis/genetics , Protein Binding , Protein Conformation , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis/mortality , Tuberculosis, Multidrug-Resistant
20.
Proc Natl Acad Sci U S A ; 113(31): E4523-30, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27432954

ABSTRACT

The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-ß-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR.


Subject(s)
Antitubercular Agents/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Gene Expression Regulation, Bacterial , Methylation , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Molecular Structure , Mutation , Mycobacterium tuberculosis/genetics , Protein Domains , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , S-Adenosylmethionine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...