Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Quant Imaging Med Surg ; 14(7): 4864-4877, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022278

ABSTRACT

Background: Anxiety-driven clinical interventions have been queried due to the nondeterminacy of pure ground-glass nodules (pGGNs). Although radiomics and radiogenomics aid diagnosis, standardization and reproducibility challenges persist. We aimed to assess a risk score system for invasive adenocarcinoma in pGGNs. Methods: In a retrospective, multi-center study, 772 pGGNs from 707 individuals in The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital were grouped into training (509 patients with 558 observations) and validation (198 patients with 214 observations) sets consecutively from January 2017 to November 2021. An additional test set of 143 observations in Hainan Cancer Hospital was analyzed in the same period. Computed tomography (CT) signs and clinical features were manually collected, and the quantitative parameters were achieved by artificial intelligence (AI). The positive cutoff score was ≥3. Risk scores system 3 combined carcinoma history, chronic obstructive pulmonary disease (COPD), maximum diameters, nodule volume, mean CT values, type II or III vascular supply signs, and other radiographic characteristics. The evaluation included the area under the curves (AUCs), accuracy, sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV) for both the risk score systems 1, 2, 3 and the AI model. Results: The risk score system 3 [AUC, 0.840; 95% confidence interval (CI): 0.789-0.890] outperformed the AI model (AUC, 0.553; 95% CI: 0.487-0.619), risk score system 1 (AUC, 0.802; 95% CI: 0.754-0.851), and risk score system 2 (AUC, 0.816; 95% CI: 0.766-0.867), with 88.0% (0.850-0.904) accuracy, 95.6% (0.932-0.972) PPV, 0.620 (0.535-0.702) NPV, 89.6% (0.864-0.920) sensitivity, and 80.6% (0.717-0.872) specificity in the training sets. In the validation and test sets, risk score system 3 performed best with AUCs of 0.769 (0.678-0.860) and 0.801 (0.669-0.933). Conclusions: An AI-based risk scoring system using quantitative image parameters, clinical features, and radiographic characteristics effectively predicts invasive adenocarcinoma in pulmonary pGGNs.

2.
Sci Rep ; 14(1): 9969, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693220

ABSTRACT

This paper proposes a prediction method for the tension force of support ropes in flexible rockfall barriers. The method is based on two full-scale model tests with an impact energy of 3000 kJ, as well as 36 set numerical models featuring varying lengths and impact energies. From the results of full scale tests and numerical models, it is inferred that the tension force at the end of the support rope is significantly less than that at the point of impact, exhibiting an approximate Gaussian attenuation distribution with propagation distance. To account for the attenuation of tensile forces in support ropes, a tensile attenuation coefficient is defined. Through comparative analysis of data obtained from 36 models with varying impact energies and propagation distances, the average attenuation coefficient for the upper support rope is determined to be approximately 0.7, while the average coefficient for the lower support rope is around 0.8. Utilizing the least squares method, a prediction method for the tension force of support ropes in flexible rockfall barriers is established. This method takes into account both the propagation distance and impact energy, enabling accurate predictions of the tensile behavior of the ropes under different conditions. This prediction model provides valuable insights for engineers in the design and optimization of these flexible barriers for rockfall mitigation.

3.
JMIR Public Health Surveill ; 9: e41640, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36607729

ABSTRACT

BACKGROUND: It is believed that smoking is not the cause of approximately 53% of lung cancers diagnosed in women globally. OBJECTIVE: The study aimed to develop and validate a simple and noninvasive model that could assess and stratify lung cancer risk in nonsmoking Chinese women. METHODS: Based on the population-based Cancer Screening Program in Urban China, this retrospective, cross-sectional cohort study was carried out with a vast population base and an immense number of participants. The training set and the validation set were both constructed using a random distribution of the data. Following the identification of associated risk factors by multivariable Cox regression analysis, a predictive nomogram was developed. Discrimination (area under the curve) and calibration were further performed to assess the validation of risk prediction nomogram in the training set, which was then validated in the validation set. RESULTS: In sum, 151,834 individuals signed up to take part in the survey. Both the training set (n=75,917) and the validation set (n=75,917) were comprised of randomly selected participants. Potential predictors for lung cancer included age, history of chronic respiratory disease, first-degree family history of lung cancer, menopause, and history of benign breast disease. We displayed 1-year, 3-year, and 5-year lung cancer risk-predicting nomograms using these 5 factors. In the training set, the 1-year, 3-year, and 5-year lung cancer risk areas under the curve were 0.762, 0.718, and 0.703, respectively. In the validation set, the model showed a moderate predictive discrimination. CONCLUSIONS: We designed and validated a simple and noninvasive lung cancer risk model for nonsmoking women. This model can be applied to identify and triage people at high risk for developing lung cancers among nonsmoking women.


Subject(s)
Lung Neoplasms , Nomograms , Humans , Female , Retrospective Studies , Cross-Sectional Studies , East Asian People , Lung Neoplasms/epidemiology
4.
Int J Cancer ; 152(1): 7-14, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35362560

ABSTRACT

We aimed to determine participation in low-dose computed tomography (LDCT) of individuals with a family history of common cancers in a population-based screening program to provide timely evidence in high-risk populations in China. The analysis was conducted using data from the Cancer Screening Program in Urban China (CanSPUC), which recruited 282 377 participants aged 40 to 74 years from eight cities in the Henan province. Using the CanSPUC risk score system, 55 428 participants were evaluated to have high risk for lung cancer and were recommended for LDCT. We calculated the overall and group-specific participation rates using family history of common cancers and compared differences in participation rates between different groups. Odds ratios (ORs) and 95% confidence intervals were derived by multivariable logistic regression. Of the 55 428 participants, 22 260 underwent LDCT (participation rate, 40.16%). Family history of lung, esophageal, stomach, liver and colorectal cancer was associated with increased participation in LDCT screening. The odds of participants with a family history of one, two, three and four or more cancer cases undergoing LDCT screening were 1.9, 2.7, 2.8 and 3.5 times, respectively, than those without a family history of cancer. Compared to those without a history of cancer, participation in LDCT gradually increased as the number of cancer cases in the family increased (P < .001). Our findings suggest that there is room for improvement in lung cancer screening given the relatively low participation rate. Lung cancer screening in populations with a family history of cancer may improve efficiency and cost-effectiveness; however, this requires further verification.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Humans , Early Detection of Cancer/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/epidemiology , Tomography, X-Ray Computed/methods , Mass Screening , China/epidemiology
5.
Front Public Health ; 10: 891306, 2022.
Article in English | MEDLINE | ID: mdl-35677762

ABSTRACT

Purpose: To assess the value of novel deep learning (DL) scores combined with complementary lung imaging reporting and data system 1.1 (cLung-RADS 1.1) in managing the risk stratification of ground-glass nodules (GGNs) and therefore improving the efficiency of lung cancer (LC) screening in China. Materials and Methods: Overall, 506 patients with 561 GGNs on routine computed tomography images, obtained between January 2017 and March 2021, were enrolled in this single-center, retrospective Chinese study. Moreover, the cLung-RADS 1.1 was previously validated, and the DL algorithms were based on a multi-stage, three-dimensional DL-based convolutional neural network. Therefore, the DL-based cLung-RADS 1.1 model was created using a combination of the risk scores of DL and category of cLung-RADS 1.1. The recall rate, precision, accuracy, per-class F1 score, weighted average F1 score (F1weighted), Matthews correlation coefficient (MCC), and area under the curve (AUC) were used to evaluate the performance of DL-based cLung-RADS 1.1. Results: The percentage of neoplastic lesions appeared as GGNs in our study was 95.72% (537/561) after long-period follow-up.Compared to cLung-RADS 1.1 model or DL model, The DL-based cLung-RADS 1.1 model achieved the excellent performance with F1 scores of 95.96% and 95.58%, F1weighted values of 97.49 and 96.62%, accuracies of 92.38 and 91.77%, and MCCs of 32.43 and 37.15% in the training and validation tests, respectively. The combined model achieved the best AUCs of 0.753 (0.526-0.980) and 0.734 (0.585-0.884) for the training and validation tests, respectively. Conclusion: The DL-based cLung-RADS 1.1 model shows the best performance in risk stratification management of GGNs, which demonstrates substantial promise for developing a more effective personalized lung neoplasm management paradigm for LC screening in China.


Subject(s)
Deep Learning , Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Retrospective Studies , Risk Assessment , Tomography, X-Ray Computed/methods
7.
Lung Cancer ; 163: 27-34, 2022 01.
Article in English | MEDLINE | ID: mdl-34894456

ABSTRACT

OBJECTIVE: Two large randomized controlled trials (RCTs) have demonstrated that low dose computed tomography (LDCT) screening reduces lung cancer mortality. Risk-prediction models have been proved to select individuals for lung cancer screening effectively. With the focus on established risk factors for lung cancer routinely available in general cancer screening settings, we aimed to develop and internally validated a risk prediction model for lung cancer. MATERIALS AND METHODS: Using data from the Cancer Screening Program in Urban China (CanSPUC) in Henan province, China between 2013 and 2019, we conducted a prospective cohort study consisting of 282,254 participants including 126,445 males and 155,809 females. Detailed questionnaire, physical assessment and follow-up were completed for all participants. Using Cox proportional risk regression analysis, we developed the Henan Lung Cancer Risk Models based on simplified questionnaire. Model discrimination was evaluated by concordance statistics (C-statistics), and model calibration was evaluated by the bootstrap sampling, respectively. RESULTS: By 2020, a total of 589 lung cancer cases occurred in the follow-up yielding an incident density of 64.91/100,000 person-years (pyrs). Age, gender, smoking, history of tuberculosis and history of emphysema were included into the model. The C-index of the model for 1-year lung cancer risk was 0.766 and 0.741 in the training set and validation set, respectively. In stratified analysis, the model showed better predictive power in males, younger participants, and former or current smoking participants. The model calibrated well across the deciles of predicted risk in both the overall population and all subgroups. CONCLUSIONS: We developed and internally validated a simple risk prediction model for lung cancer, which may be useful to identify high-risk individuals for more intensive screening for cancer prevention.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , China/epidemiology , Female , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/epidemiology , Male , Mass Screening , Risk Assessment , Risk Factors , Tomography, X-Ray Computed
8.
Front Oncol ; 11: 766939, 2021.
Article in English | MEDLINE | ID: mdl-35059311

ABSTRACT

BACKGROUND: About 15% of lung cancers in men and 53% in women are not attributable to smoking worldwide. The aim was to develop and validate a simple and non-invasive model which could assess and stratify lung cancer risk in non-smokers in China. METHODS: A large-sample size, population-based study was conducted under the framework of the Cancer Screening Program in Urban China (CanSPUC). Data on the lung cancer screening in Henan province, China, from October 2013 to October 2019 were used and randomly divided into the training and validation sets. Related risk factors were identified through multivariable Cox regression analysis, followed by establishment of risk prediction nomogram. Discrimination [area under the curve (AUC)] and calibration were further performed to assess the validation of risk prediction nomogram in the training set, and then validated by the validation set. RESULTS: A total of 214,764 eligible subjects were included, with a mean age of 55.19 years. Subjects were randomly divided into the training (107,382) and validation (107,382) sets. Elder age, being male, a low education level, family history of lung cancer, history of tuberculosis, and without a history of hyperlipidemia were the independent risk factors for lung cancer. Using these six variables, we plotted 1-year, 3-year, and 5-year lung cancer risk prediction nomogram. The AUC was 0.753, 0.752, and 0.755 for the 1-, 3- and 5-year lung cancer risk in the training set, respectively. In the validation set, the model showed a moderate predictive discrimination, with the AUC was 0.668, 0.678, and 0.685 for the 1-, 3- and 5-year lung cancer risk. CONCLUSIONS: We developed and validated a simple and non-invasive lung cancer risk model in non-smokers. This model can be applied to identify and triage patients at high risk for developing lung cancers in non-smokers.

9.
Ther Clin Risk Manag ; 16: 1195-1201, 2020.
Article in English | MEDLINE | ID: mdl-33324064

ABSTRACT

PURPOSE: The low sensitivity and false-negative results of nucleic acid testing greatly affect its performance in diagnosing and discharging patients with coronavirus disease (COVID-19). Chest computed tomography (CT)-based evaluation of pneumonia may indicate a need for isolation. Therefore, this radiologic modality plays an important role in managing patients with suspected COVID-19. Meanwhile, deep learning (DL) technology has been successful in detecting various imaging features of chest CT. This study applied a novel DL technique to standardize the discharge criteria of COVID-19 patients with consecutive negative respiratory pathogen nucleic acid test results at a "square cabin" hospital. PATIENTS AND METHODS: DL was used to evaluate the chest CT scans of 270 hospitalized COVID-19 patients who had two consecutive negative nucleic acid tests (sampling interval >1 day). The CT scans evaluated were obtained after the patients' second negative test result. The standard criterion determined by DL for patient discharge was a total volume ratio of lesion to lung <50%. RESULTS: The mean number of days between hospitalization and DL was 14.3 (± 2.4). The average intersection over union was 0.7894. Two hundred and thirteen (78.9%) patients exhibited pneumonia, of whom 54.0% (115/213) had mild interstitial fibrosis. Twenty-one, 33, and 4 cases exhibited vascular enlargement, pleural thickening, and mediastinal lymphadenopathy, respectively. Of the latter, 18.8% (40/213) had a total volume ratio of lesions to lung ≥50% according to our severity scale and were monitored continuously in the hospital. Three cases had a positive follow-up nucleic acid test during hospitalization. None of the 230 discharged cases later tested positive or exhibited pneumonia progression. CONCLUSION: The novel DL enables the accurate management of hospitalized patients with COVID-19 and can help avoid cluster transmission or exacerbation in patients with false-negative acid test.

10.
JAMA Netw Open ; 3(11): e2019039, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33141158

ABSTRACT

Importance: Lung cancer screening has been widely implemented in Europe and the US. However, there is little evidence on participation and diagnostic yields in population-based lung cancer screening in China. Objective: To assess the participation rate and detection rate of lung cancer in a population-based screening program and the factors associated with participation. Design, Setting, and Participants: This cross-sectional study used data from the Cancer Screening Program in Urban China from October 2013 to October 2019, with follow-up until March 10, 2020. The program is conducted at centers in 8 cities in Henan Province, China. Eligible participants were aged 40 to 74 and were evaluated for a high risk for lung cancer using an established risk score system. Main Outcomes and Measures: Overall and group-specific participation rates by common factors, such as age, sex, and educational level, were calculated. Differences in participation rates between those groups were compared. The diagnostic yield of both screening and nonscreening groups was calculated. Results: The study recruited 282 377 eligible participants and included 55 428 with high risk for lung cancer; the mean (SD) age was 55.3 (8.1) years, and 34 966 participants (63.1%) were men. A total of 22 260 participants underwent LDCT (participation rate, 40.16%; 95% CI, 39.82%-40.50%). The multivariable logistic regression model showed that female sex (odds ratio [OR], 1.64; 95% CI, 1.52-1.78), former smoking (OR, 1.26; 95% CI, 1.13-1.41), lack of physical activity (OR, 1.19; 95% CI, 1.14-1.24), family history of lung cancer (OR, 1.73; 95% CI, 1.66-1.79), and 7 other factors were associated with increased participation of LDCT screening. Overall, at 6-year follow-up, 78 participants in the screening group (0.35%; 95% CI, 0.29%-0.42%) and 125 in the nonscreening group (0.38%; 95% CI, 0.33%-0.44%) had lung cancer detected, which resulted in an odds ratio of 0.93 (95% CI, 0.70-1.23; P = .61). Conclusions and Relevance: The low participations rate in the program studied suggests that an improved strategy is needed. These findings may provide useful information for designing effective population-based lung cancer screening strategies in the future.


Subject(s)
Early Detection of Cancer/methods , Early Detection of Cancer/statistics & numerical data , Lung Neoplasms/diagnosis , Mass Screening/methods , Mass Screening/statistics & numerical data , Tomography, X-Ray Computed/methods , Adult , Aged , China , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
11.
J Alzheimers Dis ; 76(4): 1375-1389, 2020.
Article in English | MEDLINE | ID: mdl-32623395

ABSTRACT

BACKGROUND/OBJECTIVE: This study compares the effectiveness and safety of intranasal versus subcutaneous administration of dantrolene in 5XFAD Alzheimer's disease (AD) mice. METHODS: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal or subcutaneous dantrolene (5 mg/kg, 3×/wk), or vehicle. The early (ETG) and late (LTG) treatment groups began treatment at 2 or 6 months of age, respectively, and both treatment groups finished at12 months of age. Behavior was assessed for olfaction (buried food test), motor function (rotarod), and cognition (fear conditioning, Morris water maze). Liver histology (H & E staining) and function, synaptic proteins, and brain amyloid immunohistochemistry were examined. Plasma and brain dantrolene concentrations were determined in a separate cohort after intranasal or subcutaneous administration. RESULTS: Intranasal dantrolene achieved higher brain and lower plasma concentrations than subcutaneous administration. Dantrolene administration at both approaches significantly improved hippocampal-dependent and -independent memory in the ETG, whereas only intranasal dantrolene improved cognition in the LTG. Dantrolene treatment had no significant change in the amyloid burden or synaptic proteins and no significant side effects on mortality, olfaction, motor, or liver functions in 5XFAD mice. Intranasal dantrolene treatment significantly ameliorated memory loss when it was started either before or after the onset of AD symptoms in 5XFAD mice. CONCLUSIONS: The long-term intranasal administration of dantrolene had therapeutic effects on memory compared to the subcutaneous approach even started after onset of AD symptoms, suggesting use as a disease-modifying drug, without significant effects on amyloid plaques, side effects, or mortality.


Subject(s)
Alzheimer Disease/drug therapy , Brain/drug effects , Dantrolene/pharmacology , Memory/drug effects , Administration, Intranasal , Alzheimer Disease/mortality , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/pathology , Disease Models, Animal , Memory Disorders/pathology , Mice , Neuroprotective Agents/pharmacology
12.
PLoS One ; 15(3): e0229156, 2020.
Article in English | MEDLINE | ID: mdl-32160210

ABSTRACT

Dantrolene has been demonstrated to be neuroprotective for multiple neurodegenerative diseases. However, dantrolene's limited penetration into the CNS hampers its effectiveness as a neuroprotective agent. Here, we studied whether the intranasal administration of dantrolene provided better penetration into the brain than the commonly used oral approach. C57BL/6 mice, aged 2-4 months, received a single dose of either intranasal or oral dantrolene (5mg/kg). Inhibition of dantrolene clearance from the brain was examined by co-administration with P-gp/BCRP inhibitors, nimodipine or elacridar. The concentration of dantrolene in the brain and plasma was measured at 10, 20, 30, 50, 70, 120, 150 and 180 minutes after administration. Separate cohorts of mice were given intranasal dantrolene (5mg/kg) or vehicle, 3 times/ week, for either 3 weeks or 4 months, to examine potential adverse side effects on olfaction and motor coordination, respectively. We found that Dantrolene concentrations were sustained in the brain after intranasal administration for 180 min, while concentrations fell to zero at 120 min for oral administration. Chronic use of intranasal dantrolene did not impair olfaction or motor function in these mice. Blood brain barrier pump inhibitors did not further increase dantrolene peak concentrations in the brain. Our results suggested that Intranasal administration of dantrolene is an effective route to increase its concentration and duration in the brain compared to the oral approach, without any obvious side effects on olfaction or motor function.


Subject(s)
Brain/metabolism , Dantrolene/administration & dosage , Dantrolene/pharmacokinetics , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacokinetics , Administration, Intranasal , Administration, Oral , Animals , Dantrolene/blood , Female , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/blood , Tissue Distribution
13.
Cancer Manag Res ; 12: 189-198, 2020.
Article in English | MEDLINE | ID: mdl-32021435

ABSTRACT

PURPOSE: To evaluate the effectiveness of using a modified lung imaging reporting and data system (Lung-RADS) for risk stratification of pure ground-glass nodules (pGGNs) in low-dose computed tomography (LDCT) for lung cancer (LC) screenings in China. PATIENTS AND METHODS: Eight subjects with nine pGGNs originating from a Cancer Screening Program were enrolled as training set and 32 asymptomatic subjects with 35 pGGNs were selected as validation set from November 2013 to October 2018. The complementary Lung-RADS categories were set based on the GGN-vessel relationship (GVR). The correlations between GGN-vessel relationships and pathology were evaluated, and the diagnostic value of complementary Lung-RADS version 1.1 in discriminating malignant pGGNs were analyzed. RESULTS: The inter-reader agreements for Lung-RADS 1.1 (intraclass correlation coefficient (ICC= 0.999) and complementary Lung-RADS 1.1 (ICC= 0.971) displayed good reliability. The combined incidence of invasive adenocarcinoma in type III and IV was more than that of benign and preinvasive diseases (30% vs 75%, P=0.013). Type II GVR between two benign (66.7%), seven preinvasive (53.8%), and six invasive (21.4%) GGN cases was statistically significant (χ 2 =5.415, P=0.019). GGN pathological groups and GVR had a significant correlation (r=0.584, P=0.00). Compared to Lung-RADS 1.1, complementary Lung-RADS 1.1 had better performance in the training set, with its sensitivity increased from 33.3% to 88.9%, accuracy increased from 44.4% to 88.9%, false-negative proportion (FNP) decreased from 66.7% to 11.1%, and the sensitivity to predict malignant nodules increased from 13.8% to 93.1%, accuracy increased from 28.6% to 80.0%, and FNP decreased from 86.2% to 6.9% in validation set. The detection rate of preinvasive disease and adenocarcinoma was increased from 12.5% to 90.6% and that of missed diagnosis decreased from 87.5% to 9.4% in the validation set, P=0.004. CONCLUSION: Complementary Lung-RADS 1.1 is superior to Lung-RADS 1.1 and would be beneficial for LC screening of LDCT in China.

14.
Alzheimer Dis Assoc Disord ; 29(3): 184-191, 2015.
Article in English | MEDLINE | ID: mdl-25650693

ABSTRACT

In this study, we investigated the long-term treatment of dantrolene on amyloid and tau neuropathology, brain volume, and cognitive function in aged triple transgenic Alzheimer (3xTg-AD) mice. Fifteen-month old 3xTg-AD mice and wild-type controls were treated with oral dantrolene (5 mg/kg) or vehicle control twice a week for 6 months. Learning and memory were examined using the Morris Water Maze at 21 and 22 months of age. After the behavioral testing, hippocampal and cortical brain volumes were calculated with magnetic resonance imaging and motor function was evaluated using the rotorod. The amyloid burden and tau neurofibrillary tangles in the hippocampus were determined using immunohistochemistry. We found that dantrolene significantly decreased the intraneuronal amyloid accumulation by as much as 76% compared with its corresponding vehicle control, together with a trend to reduce phosphorylated tau in the hippocampus. No significant differences could be detected in hippocampal or cortical brain volume, motor function or cognition among all experimental groups, indicating that the mice were still presymptomatic for Alzheimer disease. Thus, presymptomatic and long-term dantrolene treatment significantly decreased the intraneuronal amyloid burden in aged 3xTg-AD mice before significant changes in brain volume, or cognition.


Subject(s)
Alzheimer Disease/drug therapy , Brain/drug effects , Dantrolene/pharmacology , Hippocampus/drug effects , Memory/drug effects , Aging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/pathology , Cognition Disorders/drug therapy , Disease Models, Animal , Hippocampus/pathology , Mice, Transgenic , Plaque, Amyloid/drug therapy
15.
Neurosci Lett ; 516(2): 274-9, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22516463

ABSTRACT

Disruption of intracellular calcium homeostasis via abnormal and excessive activation of ryanodine receptors plays an important role in the neuropathology of Alzheimer's disease. We investigated the therapeutic effect of dantrolene, a ryanodine receptor antagonist, on cognitive dysfunction and neuropathology in the triple transgenic Alzheimer mouse model (3xTg-AD). 3xTg-AD mice were treated with dantrolene from 2 to 13 months of age. Learning and memory were measured with the Morris Water Maze at 6, 10, and 13 months of age. Amyloid and tau neuropathology and biomarkers for synaptic dysfunction and neurodegeneration were examined in the brain using immunoblotting or immunohistochemistry. Dantrolene treatment for 11 months significantly reduced both memory deficits and amyloid plaque load in the hippocampus in 13-month-old 3xTg-AD mice. Dantrolene treatment, however, had no effect on phosphorylated tau, phosphorylated or total GSK-3ß, synaptic markers, or mitochondrial or cytosolic cytochrome C. Our results suggest that dantrolene significantly improves cognition in a murine model of Alzheimer's disease and is associated with a reduction in amyloid plaque burden, forming the basis for a novel therapeutic approach for Alzheimer's disease.


Subject(s)
Alzheimer Disease/pathology , Cognition Disorders/prevention & control , Dantrolene/pharmacology , Neuroprotective Agents/pharmacology , Alzheimer Disease/complications , Animals , Blotting, Western , Cognition Disorders/etiology , Disease Models, Animal , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Transgenic , Plaque, Amyloid/pathology
16.
Anesth Analg ; 114(1): 122-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22025496

ABSTRACT

BACKGROUND: Human serum albumin (HSA) is an important carrier for opioids. However, the locations of the binding sites remain unclear. In the present study, we have characterized opioid-HSA interactions using multiple biochemical and biophysical techniques to reveal: (a) the location of the binding site(s); (b) whether naloxone shares the binding site with morphine; and (c) whether opioid agonists share their binding site(s) with general anesthetics. METHODS: Elution chromatography to determine the global interactions and tryptophan intrinsic fluorescence to determine the localized interactions of opioids with HSA were used. Competition studies using isothermal titration calorimetry were used to determine the overlap of binding site(s) among opioid agonists, antagonists, and general anesthetics. An automatic docking calculation was used to predict the possible binding sites and to assess findings of the solution studies. RESULTS: For elution chromatography with immobilized HSA, the retention times of naloxone, morphine, and fentanyl were prolonged but shorter than that of propofol. The inhibition of tryptophan fluorescence by naloxone was not affected by morphine or fentanyl. The calorimetric heat profiles of propofol and halothane interaction with HSA were changed significantly, but not equally by morphine, naloxone, or fentanyl. Consistent with direct binding studies, docking results demonstrated that opioids share sites with general anesthetics; a distinct binding site for naloxone was revealed near the sole tryptophan in HSA that is not shared with morphine. CONCLUSIONS: The interaction of opioids with HSA is weak in comparison with propofol. Naloxone has a distinct binding site in HSA not shared with opioid agonists. Opioids share binding sites with general anesthetics in HSA.


Subject(s)
Analgesics, Opioid/metabolism , Fentanyl/metabolism , Morphine/metabolism , Serum Albumin/metabolism , Analgesics, Opioid/chemistry , Anesthetics, Intravenous/metabolism , Binding Sites , Binding, Competitive , Calorimetry , Chromatography, Affinity , Fentanyl/chemistry , Humans , Models, Molecular , Morphine/chemistry , Naloxone/metabolism , Narcotic Antagonists/metabolism , Propofol/metabolism , Protein Binding , Protein Conformation , Serum Albumin/chemistry , Spectrometry, Fluorescence
17.
J Pharmacol Exp Ther ; 333(1): 14-22, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20086058

ABSTRACT

The commonly used general anesthetic isoflurane induces widespread neurodegeneration in the developing mammalian brain through poorly understood mechanisms. We have investigated whether excessive Ca2+ release from the endoplasmic reticulum via overactivation of inositol 1,4,5-trisphosphate receptors (InsP3Rs) is a contributing factor in such neurodegeneration in rodent primary cultured neurons and developing rat brain. We also investigated the correlation between isoflurane exposure and cognitive decline in rats at 1 month of age. Our results show that isoflurane increases cytosolic calcium in the primary cortical neurons through release from the endoplasmic reticulum and influx from the extracellular space. Pharmacological inhibition of InsP3R activity and knockdown of its expression nearly abolishes the isoflurane-mediated elevation of the cytosolic calcium concentration and cell death in rodent primary cortical and hippocampal neurons. Inhibition of InsP3R activity by its antagonist xestospongin C significantly inhibits neurodegeneration induced by isoflurane at clinically used concentration in the developing brain of postnatal day 7 rats. Moreover, our results show that isoflurane activates beta-site amyloid beta precursor protein-cleaving enzyme via activation of the InsP3R. We also noted that mice exposed to isoflurane during early postnatal development showed transient memory and learning impairments, which did not correlate well with the noted neuropathological defects. Taken together, our results suggest that Ca2+ dysregulation through overactivation of the InsP3R may be a contributing factor in the mechanism of isoflurane-induced neurodegeneration in rodent neuronal cell culture and during brain development.


Subject(s)
Anesthetics, Inhalation/adverse effects , Inositol 1,4,5-Trisphosphate Receptors/physiology , Isoflurane/adverse effects , Nerve Degeneration/metabolism , Neurons/drug effects , Amyloid Precursor Protein Secretases/metabolism , Animals , Apoptosis , Aspartic Acid Endopeptidases/metabolism , Brain/growth & development , Brain/metabolism , Brain/pathology , Calcium/physiology , Cells, Cultured , Enzyme Activation , Gene Knockdown Techniques , Homeostasis , Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Maze Learning/drug effects , Mice , Nerve Degeneration/chemically induced , Nerve Degeneration/pathology , Neurons/metabolism , Neurons/pathology , Rats , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
18.
Pediatr Res ; 66(4): 435-40, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20016413

ABSTRACT

We investigated the extent of isoflurane-induced neurodegeneration on the fetuses of pregnant rats exposed in utero. Pregnant rats at gestational d 21 were divided into three experimental groups. Rats in the control group spontaneously breathed 100% oxygen for 1 h. Rats in the treatment groups breathed either 1.3 or 3% isoflurane in 100% oxygen through an endotracheal tube, with mechanical ventilation for 1 h. Rat pups were delivered by cesarian section 6 h after treatment, and fetal blood was sampled from the left ventricle of each fetal heart and evaluated for S100beta. Fetal brains were then evaluated for apoptosis, using caspase-3 immunohistochemistry in the CA1 region of the hippocampus and the retrosplenial cortex (RS). The 3% isoflurane treatment group showed significantly higher levels of S100beta levels and significantly increased average densities of total caspase-3-positive cells in the CA1 hippocampus and RS cortex compared with the control and the 1.3% isoflurane groups. There were no differences in S100beta levels or densities of caspase-3-positive cells between the control and 1.3% isoflurane groups. Isoflurane at a concentration of 3% for 1 h increased neurodegeneration in the hippocampal CA1 area and the retrosplenial cortex in the developing brain of fetal rats.


Subject(s)
Anesthetics, Inhalation/pharmacology , Brain , Fetus , Isoflurane/pharmacology , Nerve Degeneration/chemically induced , Animals , Apoptosis/drug effects , Brain/anatomy & histology , Brain/drug effects , Brain/pathology , Female , Fetus/anatomy & histology , Fetus/drug effects , Fetus/pathology , Gestational Age , Humans , Nerve Degeneration/pathology , Nerve Growth Factors/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , S100 Calcium Binding Protein beta Subunit , S100 Proteins/metabolism
20.
Neuropharmacology ; 53(8): 942-50, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17959201

ABSTRACT

In a maternal fetal rat model, we investigated the behavioral and neurotoxic effects of fetal exposure to isoflurane. Pregnant rats at gestational day 21 were anesthetized with 1.3% isoflurane for 6h. Apoptosis was quantified in the hippocampus and cortex at 2 and 18h after exposure in the fetal brain and in the postnatal day 5 (P5) pup brain. Spatial memory and learning of the fetal exposed pups were examined with the Morris Water Maze at juvenile and adult ages. Rat fetal exposure to isoflurane at pregnancy day 21 through maternal anesthesia significantly decreased spontaneous apoptosis in the hippocampal CA1 region and in the retrosplenial cortex at 2h after exposure, but not at 18h or at P5. Fetal exposure to isoflurane did not impair subsequent juvenile or adult postnatal spatial reference memory and learning and, in fact, improved spatial memory in the juvenile rat. These results show that isoflurane exposure during late pregnancy is not neurotoxic to the fetal brain and does not impair memory and learning in the juvenile or adult rat.


Subject(s)
Anesthetics, Inhalation/adverse effects , Isoflurane/adverse effects , Maze Learning/drug effects , Memory/drug effects , Prenatal Exposure Delayed Effects/physiopathology , Space Perception/drug effects , Analysis of Variance , Anesthetics, Inhalation/metabolism , Animals , Animals, Newborn , Apoptosis/drug effects , Behavior, Animal/drug effects , Caspase 3/metabolism , DNA Fragmentation/drug effects , Embryo, Mammalian , Female , Hippocampus/pathology , In Situ Nick-End Labeling , Isoflurane/metabolism , Neurons/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL