Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
1.
Front Neurol ; 15: 1373306, 2024.
Article in English | MEDLINE | ID: mdl-38952470

ABSTRACT

Background: Cerebral small vessel disease (CSVD) is a common neurodegenerative condition in the elderly, closely associated with cognitive impairment. Early identification of individuals with CSVD who are at a higher risk of developing cognitive impairment is crucial for timely intervention and improving patient outcomes. Objective: The aim of this study is to construct a predictive model utilizing LASSO regression and binary logistic regression, with the objective of precisely forecasting the risk of cognitive impairment in patients with CSVD. Methods: The study utilized LASSO regression for feature selection and logistic regression for model construction in a cohort of CSVD patients. The model's validity was assessed through calibration curves and decision curve analysis (DCA). Results: A nomogram was developed to predict cognitive impairment, incorporating hypertension, CSVD burden, apolipoprotein A1 (ApoA1) levels, and age. The model exhibited high accuracy with AUC values of 0.866 and 0.852 for the training and validation sets, respectively. Calibration curves confirmed the model's reliability, and DCA highlighted its clinical utility. The model's sensitivity and specificity were 75.3 and 79.7% for the training set, and 76.9 and 74.0% for the validation set. Conclusion: This study successfully demonstrates the application of machine learning in developing a reliable predictive model for cognitive impairment in CSVD. The model's high accuracy and robust predictive capability provide a crucial tool for the early detection and intervention of cognitive impairment in patients with CSVD, potentially improving outcomes for this specific condition.

2.
Chem Commun (Camb) ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989591

ABSTRACT

A stable lithium metal-organic framework, constructed using a redox-active N,N,N',N'-tetrakis(4-carboxyphenyl)-1,4-phenylenediamine linker and Li8 cluster-based one-dimensional rod secondary building unit, exhibits good stability and reversible redox activity. The Li8-MOF, which can be oxidized by AgNO3, has the potential to function as an electrochromic device, thereby advancing the development of smart MOF materials.

3.
Lung ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958717

ABSTRACT

OBJECTIVES: This study was performed to construct and validate a risk prediction model for non-invasive ventilation (NIV) failure after birth in premature infants with gestational age < 32 weeks. METHODS: The data were derived from the multicenter retrospective study program - Jiangsu Provincial Neonatal Respiratory Failure Collaboration Network from Jan 2019 to Dec 2021. The subjects finally included were preterm infants using NIV after birth with gestational age less than 32 weeks and admission age within 72 h. After screening by inclusion and exclusion criteria, 1436 babies were subsequently recruited in the study, including 1235 infants in the successful NIV group and 201 infants in the failed NIV group. RESULTS: (1) Gestational age, 5 min Apgar, Max FiO2 during NIV, and FiO2 fluctuation value during NIV were selected by univariate and multivariate analysis. (2) The area under the curve of the prediction model was 0.807 (95% CI: 0.767-0.847) in the training set and 0.825 (95% CI: 0.766-0.883) in the test set. The calibration curve showed good agreement between the predicted probability and the actual observed probability (Mean absolute error = 0.008 for the training set; Mean absolute error = 0.012 for the test set). Decision curve analysis showed good clinical validity of the risk model in the training and test cohorts. CONCLUSION: This model performed well on dimensions of discrimination, calibration, and clinical validity. This model can serve as a useful tool for neonatologists to predict whether premature infants will experience NIV failure after birth.

4.
Phytochemistry ; 225: 114170, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38830388

ABSTRACT

Eleven alkaloids including four previously undescribed oxoisoaporphine alkaloids, menisoxoisoaporphines A-D (1-4), four known analogues (5-8), and three aporphine alkaloids (9-11), were isolated and identified from the rhizomes of Menispermum dauricum. Their structures were elucidated by extensive spectroscopic data and single-crystal X-ray diffraction analyses. Among them, compounds 1 and 4 were the first samples of oxoisoaporphine with C-6 isopentylamino moiety, and 2 was a rare C-4 methylation product of oxoisoaporphine alkaloid. The in vitro anti-inflammatory activity of compounds 1-11 was performed by evaluating the inhibition of NO level in LPS-induced RAW264.7 macrophages. Among them, compound 4 exhibited the most potent NO inhibition activity with an IC50 value of 1.95 ± 0.33 µM. The key structure-activity relationships of those oxoisoaporphine alkaloids for anti-inflammatory effects have been summarized.


Subject(s)
Alkaloids , Aporphines , Menispermum , Nitric Oxide , Mice , RAW 264.7 Cells , Animals , Structure-Activity Relationship , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Menispermum/chemistry , Aporphines/pharmacology , Aporphines/chemistry , Aporphines/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Dose-Response Relationship, Drug , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Macrophages/drug effects
5.
Exp Biol Med (Maywood) ; 249: 10051, 2024.
Article in English | MEDLINE | ID: mdl-38881848

ABSTRACT

Podocyte injury or dysfunction can lead to proteinuria and glomerulosclerosis. Zonula occludens 1 (ZO-1) is a tight junction protein which connects slit diaphragm (SD) proteins to the actin cytoskeleton. Previous studies have shown that the expression of ZO-1 is decreased in chronic kidney disease (CKD). Thus, elucidation of the regulation mechanism of ZO-1 has considerable clinical importance. Triptolide (TP) has been reported to exert a strong antiproteinuric effect by inhibiting podocyte epithelial mesenchymal transition (EMT) and inflammatory response. However, the underlying mechanisms are still unclear. We found that TP upregulates ZO-1 expression and increases the fluorescence intensity of ZO-1 in a puromycin aminonucleoside (PAN)-induced podocyte injury model. Permeablity assay showed TP decreases podocyte permeability in PAN-treated podocyte. TP also upregulates the DNA demethylase TET2. Our results showed that treatment with the DNA methyltransferase inhibitors 5-azacytidine (5-AzaC) and RG108 significantly increased ZO-1 expression in PAN-treated podocytes. Methylated DNA immunoprecipitation (MeDIP) and hydroxymethylated DNA immunoprecipitation (hMeDIP) results showed that TP regulates the methylation status of the ZO-1 promoter. Knockdown of TET2 decreased ZO-1 expression and increased methylation of its promoter, resulting in the increase of podocyte permeability. Altogether, these results indicate that TP upregulates the expression of ZO-1 and decreases podocyte permeability through TET2-mediated 5 mC demethylation. These findings suggest that TP may alleviate podocyte permeability through TET2-mediated hydroxymethylation of ZO-1.


Subject(s)
Dioxygenases , Diterpenes , Epoxy Compounds , Phenanthrenes , Podocytes , Zonula Occludens-1 Protein , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Zonula Occludens-1 Protein/metabolism , Phenanthrenes/pharmacology , Diterpenes/pharmacology , Epoxy Compounds/pharmacology , Dioxygenases/metabolism , Animals , DNA-Binding Proteins/metabolism , Mice , Proto-Oncogene Proteins/metabolism , Permeability/drug effects , Humans , DNA Methylation/drug effects
6.
Article in English | MEDLINE | ID: mdl-38936810

ABSTRACT

AIM: To investigate the DNA damage response (DDR) in a cyclophosphamide (CTX)-induced mouse model of premature ovarian failure (POF). METHODS: The POF model was established by injecting mice with CTX. The body, ovarian weights, the estrus cycle, and pathological changes of the ovaries were recorded. The serum levels of 17 ß-estradiol (E2) and follicle-stimulating hormone (FSH) were measured. The expression of Ki67, ß-galactosidase (ß-gal), p21, p53, γH2AX, and pATM in ovarian tissues was detected by immunohistochemistry. The expression of ß-gal, γH2AX, and pATM was analyzed by immunofluorescence staining of primary cultured granulosa cells (GCs). RESULTS: The body and ovarian weights decreased, the estrus cycles were erratic, and the FSH level increased, whereas the E2 level decreased in POF mice compared to controls. The pathological consequences of POF revealed an increase in atretic follicles, corpus luteum, and primordial follicles and a decrease in the number of primary, secondary, and tertiary follicles. Ki67 expression was reduced, ß-gal, p21, p53, γH2AX, and pATM expression were elevated in the ovaries of POF mice. The expression of ß-gal, γH2AX, and pATM increased in GCs with the concentration in a time-dependent manner. CONCLUSION: In total, CTX induced POF in mice, which was mediated by the DDR pathway of ATM-P53-P21.

7.
Brain Imaging Behav ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713331

ABSTRACT

While alterations in cortical thickness have been widely observed in individuals with alcohol dependence, knowledge about cortical thickness-based structural covariance networks is limited. This study aimed to explore the topological disorganization of structural covariance networks based on cortical thickness at the single-subject level among patients with alcohol dependence. Structural imaging data were obtained from 61 patients with alcohol dependence during early abstinence and 59 healthy controls. The single-subject structural covariance networks were constructed based on cortical thickness data from 68 brain regions and were analyzed using graph theory. The relationships between network architecture and clinical characteristics were further investigated using partial correlation analysis. In the structural covariance networks, both patients with alcohol dependence and healthy controls displayed small-world topology. However, compared to controls, alcohol-dependent individuals exhibited significantly altered global network properties characterized by greater normalized shortest path length, greater shortest path length, and lower global efficiency. Patients exhibited lower degree centrality and nodal efficiency, primarily in the right precuneus. Additionally, scores on the Alcohol Use Disorder Identification Test were negatively correlated with the degree centrality and nodal efficiency of the left middle temporal gyrus. The results of this correlation analysis did not survive after multiple comparisons in the exploratory analysis. Our findings may reveal alterations in the topological organization of gray matter networks in alcoholism patients, which may contribute to understanding the mechanisms of alcohol addiction from a network perspective.

8.
Oncol Lett ; 28(1): 291, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38737979

ABSTRACT

[This retracts the article DOI: 10.3892/ol.2018.8695.].

10.
J Transl Med ; 22(1): 516, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816739

ABSTRACT

Target cancer therapy has been developed for clinical cancer treatment based on the discovery of CRISPR (clustered regularly interspaced short palindromic repeat) -Cas system. This forefront and cutting-edge scientific technique improves the cancer research into molecular level and is currently widely utilized in genetic investigation and clinical precision cancer therapy. In this review, we summarized the genetic modification by CRISPR/Cas and CRISPR screening system, discussed key components for successful CRISPR screening, including Cas enzymes, guide RNA (gRNA) libraries, target cells or organs. Furthermore, we focused on the application for CAR-T cell therapy, drug target, drug screening, or drug selection in both ex vivo and in vivo with CRISPR screening system. In addition, we elucidated the advantages and potential obstacles of CRISPR system in precision clinical medicine and described the prospects for future genetic therapy.In summary, we provide a comprehensive and practical perspective on the development of CRISPR/Cas and CRISPR screening system for the treatment of cancer defects, aiming to further improve the precision and accuracy for clinical treatment and individualized gene therapy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Neoplasms , Humans , CRISPR-Cas Systems/genetics , Neoplasms/genetics , Neoplasms/therapy , Gene Editing/methods , Animals , Genetic Therapy/methods , Molecular Targeted Therapy
11.
Chem Asian J ; 19(11): e202400175, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38630005

ABSTRACT

Alkaline earth (AE) metal complexes have garnered significant interest in various functional fields due to their nontoxicity, low density, and low cost. However, there is a lack of systematic investigation into the structural characteristics and physical properties of AE-metal-organic frameworks (MOFs). In this research, we synthesized isostructural MOFs consisting of AE4(µ4-Cl) clusters bridged by benzo-(1,2;3,4;5,6)-tris(thiophene-2'-carboxylic acid) (BTTC3-) ligands. The resulting structure forms a truncated octahedral cage denoted as [AE4(m4-Cl)]6(BTTC)8, which further linked to a porous three-dimensional framework. Among the investigated AE ions (Ca, Sr, and Ba), the Ca4-MOF demonstrated good chemical stability in water compared to Sr4-MOF and Ba4-MOF. The N2 adsorption and solid-state UV-vis-NIR absorption behaviors were evaluated for all AE4-MOFs, showing similar trends among the different metal ions. Additionally, the proton conduction study revealed that the Ca4-MOF exhibited ultra-high proton conductivity, reaching 3.52×10-2 S cm-1 at 343 K and 98 % RH. Notably, the introduction of LiCl via guest exchange resulted in an improved proton conduction of up to 6.36×10-2 S cm-1 under similar conditions in the modified LiCl@Ca4-MOF. The findings shed light on the regulation of physical properties and proton conductivity of AE-MOFs, providing valuable insights for their potential applications in various fields.

12.
Curr Med Sci ; 44(2): 298-308, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619682

ABSTRACT

OBJECTIVE: In B-cell acute lymphoblastic leukemia (B-ALL), current intensive chemotherapies for adult patients fail to achieve durable responses in more than 50% of cases, underscoring the urgent need for new therapeutic regimens for this patient population. The present study aimed to determine whether HZX-02-059, a novel dual-target inhibitor targeting both phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) and tubulin, is lethal to B-ALL cells and is a potential therapeutic for B-ALL patients. METHODS: Cell proliferation, vacuolization, apoptosis, cell cycle, and in-vivo tumor growth were evaluated. In addition, Genome-wide RNA-sequencing studies were conducted to elucidate the mechanisms of action underlying the anti-leukemia activity of HZX-02-059 in B-ALL. RESULTS: HZX-02-059 was found to inhibit cell proliferation, induce vacuolization, promote apoptosis, block the cell cycle, and reduce in-vivo tumor growth. Downregulation of the p53 pathway and suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway and the downstream transcription factors c-Myc and NF-κB were responsible for these observations. CONCLUSION: Overall, these findings suggest that HZX-02-059 is a promising agent for the treatment of B-ALL patients resistant to conventional therapies.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tubulin , Humans , Cell Proliferation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Tubulin/metabolism , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use
13.
Nat Prod Res ; : 1-7, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619012

ABSTRACT

This paper reports the isolation of two undescribed phenolic glycosides (1 and 2), together with seven known compounds (3-9) from the branches of Viburnum chinshanense. The structures of undescribed compounds were elucidated by comprehensive spectroscopic methods (1D NMR, 2D NMR, and HRESIMS). The sugar units of compounds 1 and 2 were identified by acid hydrolysis and HPLC analysis of the chiral derivatives of the monosaccharides. Furthermore, the α­amylase and α-glucosidase inhibitory activities of all isolates were evaluated and compounds 1, 5, and 8 displayed potential α­amylase and α-glucosidase inhibitory activities. The molecular docking analyses of compounds 1 and 8 with the potent inhibition towards the target enzymes were also performed.

14.
Heliyon ; 10(7): e27362, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560168

ABSTRACT

Background: Primary liver cancer (PLC) is a prevalent malignancy of the digestive system characterized by insidious symptom onset and a generally poor prognosis. Recent studies have highlighted a significant correlation between the initiation and prognosis of liver cancer and the immune function of PLC patients. Purpose: Revealing the expression of PLC-related immune genes and the characteristics of immune cell infiltration provides assistance for the analysis of clinical pathological parameters and prognosis of PLC patients. Methods: PLC-related differentially expressed genes (DEGs) with a median absolute deviation (MAD > 0.5) were identified from TCGA and GEO databases. These DEGs were intersected with immune-related genes (IRGs) from the ImmPort database to obtain PLC-related IRGs. The method of constructing a prognostic model through immune-related gene pairs (IRGPs) is used to obtain IRGPs and conduct the selection of central immune genes. The central immune genes obtained from the selection of IRGPs are validated in PLC. Subsequently, the relative proportions of 22 types of immune cells in different immune risk groups are evaluated, and the differential characteristics of PLC-related immune cells are verified through animal experiments. Results: Through database screening and the construction of an IRGP prognosis model, 84 pairs of IRGPs (P < 0.001) were ultimately obtained. Analysis of these 84 IRGPs revealed 11 central immune genes related to PLC, showing differential expression in liver cancer tissues compared to normal liver tissues. Results from the CiberSort platform indicate differential expression of immune cells such as naive B cells, macrophages, and neutrophils in different immune risk groups. Animal experiments demonstrated altered immune cell proportions in H22 tumor-bearing mice, validating findings from peripheral blood and spleen homogenate analyses. Conclusion: Our study successfully predicted and validated PLC-related IRGs and immune cells, suggesting their potential as prognostic indicators and therapeutic targets for PLC.

15.
J Psychiatr Res ; 172: 402-410, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458112

ABSTRACT

We aimed to examine the hypotheses that glucolipid metabolism is linked to neurocognition and gray matter volume (GMV) and that GMV mediates the association of glucolipid metabolism with neurocognition in first-episode, drug-naïve (FEDN) patients with schizophrenia. Parameters of glucolipid metabolism, neurocognition, and magnetic resonance imaging were assessed in 63 patients and 31 controls. Compared to controls, patients exhibited higher levels of fasting glucose, triglyceride, and insulin resistance index, lower levels of cholesterol and high-density lipoprotein cholesterol, poorer neurocognitive functions, and decreased GMV in the bilateral insula, left middle occipital gyrus, and left postcentral gyrus. In the patient group, triglyceride levels and the insulin resistance index exhibited a negative correlation with Rapid Visual Information Processing (RVP) mean latency, a measure of attention within the Cambridge Neurocognitive Test Automated Battery (CANTAB), while showing a positive association with GMV in the right insula. The mediation model revealed that triglyceride and insulin resistance index had a significant positive indirect (mediated) influence on RVP mean latency through GMV in the right insula. Glucolipid metabolism was linked to both neurocognitive functions and GMV in FEDN patients with schizophrenia, with the effect pattern differing from that observed in chronic schizophrenia or schizophrenia comorbid with metabolic syndrome. Moreover, glucolipid metabolism might indirectly contribute to neurocognitive deficits through the mediating role of GMV in these patients.


Subject(s)
Insulin Resistance , Schizophrenia , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Magnetic Resonance Imaging/methods , Cholesterol , Triglycerides
16.
Biosens Bioelectron ; 254: 116233, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518563

ABSTRACT

Intracellular microenvironment (viscosity and polarity) and peroxynitrite ions (ONOO-) are involved in maintaining cell morphology, cell function, and signaling so that it is crucial to explore their level changes in vitro and vivo. In this work, we designed and synthesized a mitochondria-targeted fluorescence probe XBL for monitoring the dynamic changes of viscosity, polarity, and ONOO- based on TICT and ICT mechanism. The fluorescence spectra showed obvious changes for polarity at 500 nm as well as ONOO- and viscosity at 660 nm, respectively. The XBL can image simultaneously viscosity, polarity, and ONOO- in cells, and the results showed excess ONOO- leaded to the increase of viscosity in mitochondrial. The ferroptosis process was accompanied by increase of intracellular viscosity and ONOO- levels (or decrease of polarity), which allowed us to better understand the relevant physiological and pathological processes. The XBL can distinguish normal cells and cancerous cells by the fluorescence intensity changes in green and red channels, and image viscosity in inflamed mice. Thus, XBL can provided the chemical tool to understand the physiological and pathological mechanisms of disease by simultaneous detection of viscosity, polarity and ONOO-.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , Mice , Animals , Viscosity , RAW 264.7 Cells , Mitochondria , Peroxynitrous Acid
17.
Sci Rep ; 14(1): 5976, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472256

ABSTRACT

We performed this cohort study to investigate whether the myocardial bridge (MB) affects the fat attenuation index (FAI) and to determine the optimal cardiac phase to measure the volume and the FAI of pericoronary adipose tissue (PCAT). The data of 300 patients who were diagnosed with MB of the left anterior descending (LAD) coronary artery were retrospectively analyzed. All of patients were divided into the MB group and the MB with atherosclerosis group. In addition, 104 patients with negative CCTA results were enrolled as the control group. There was no significant difference between FAI values measured in systole and diastole (P > 0.05). There was no significant difference in FAI among the MB group, the MB with atherosclerosis group, and the control group (P > 0.05). In MB with atherosclerosis group, LAD stenosis degree (< 50%) (OR = 0.186, 95% CI 0.036-0.960; P = 0.045) and MB located in the distal part of LAD opening (OR = 0.880, 95% CI 0.789-0.980; P = 0.020) were protective factors of FAI value. A distance (from the LAD opening to the proximal point of the MB) of 29.85 mm had the highest predictive value for abnormal FAI [area under the curve (AUC), 0.798], with a sensitivity of 81.1% and a specificity of 74.6%.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Myocardial Bridging , Humans , Coronary Angiography/methods , Cohort Studies , Retrospective Studies , Tomography, X-Ray Computed , Coronary Vessels , Adipose Tissue
18.
Zool Res ; 45(2): 329-340, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38485503

ABSTRACT

The leopard coral grouper ( Plectropomus leopardus) is a species of significant economic importance. Although artificial cultivation of P. leopardus has thrived in recent decades, the advancement of selective breeding has been hindered by the lack of comprehensive population genomic data. In this study, we identified over 8.73 million single nucleotide polymorphisms (SNPs) through whole-genome resequencing of 326 individuals spanning six distinct groups. Furthermore, we categorized 226 individuals with high-coverage sequencing depth (≥14×) into eight clusters based on their genetic profiles and phylogenetic relationships. Notably, four of these clusters exhibited pronounced genetic differentiation compared with the other populations. To identify potentially advantageous loci for P. leopardus, we examined genomic regions exhibiting selective sweeps by analyzing the nucleotide diversity ( θπ) and fixation index ( F ST) in these four clusters. Using these high-coverage resequencing data, we successfully constructed the first haplotype reference panel specific to P. leopardus. This achievement holds promise for enabling high-quality, cost-effective imputation methods. Additionally, we combined low-coverage sequencing data with imputation techniques for a genome-wide association study, aiming to identify candidate SNP loci and genes associated with growth traits. A significant concentration of these genes was observed on chromosome 17, which is primarily involved in skeletal muscle and embryonic development and cell proliferation. Notably, our detailed investigation of growth-related SNPs across the eight clusters revealed that cluster 5 harbored the most promising candidate SNPs, showing potential for genetic selective breeding efforts. These findings provide a robust toolkit and valuable insights into the management of germplasm resources and genome-driven breeding initiatives targeting P. leopardus.


Subject(s)
Anthozoa , Bass , Humans , Animals , Phylogeny , Genome-Wide Association Study/veterinary , Genome
19.
Clin Physiol Funct Imaging ; 44(3): 251-259, 2024 May.
Article in English | MEDLINE | ID: mdl-38356324

ABSTRACT

PURPOSE: To quantitatively investigate the effect of myocardial bridge (MB) in the left anterior descending artery (LAD) on the fractional flow reserve (FFR). MATERIALS AND METHODS: Three-hundred patients with LAD MB who had undergone coronary artery CT angiography (CCTA) were retrospectively enroled, and 104 normal patients were enroled as the control. The CCTA-derived fractional flow reserve (FFRCT) was measured at the LAD 10 mm proximal (FFR1) and 20-40 mm distal (FFR3) to the MB and at the MB location (FFR2). RESULTS: FFR2 and FFR3 of the MB (with BM only) and MBLA (with both MB and atherosclerosis) groups were significantly (p < 0.01) lower than those of the control. The FFR3 distal to the MB was significantly lower (p < 0.01) than that of the control. The FFRCT of the whole LAD in the MBLA group was significantly (p < 0.05) lower than that of the MB and control group (p < 0.05). MB length (OR 1.061) and MB muscle index (odds ratio or OR 1.007) were two risk factors for abnormal FFRCT, and MB length was a significant independent risk factor for abnormal FFRCT (OR = 1.077). LAD stenosis degree was a risk factor for abnormal FFRCT values (OR 3.301, 95% confidence interval [CI] 1.441-7.562, p = 0.005) and was also a significant independent risk factor (OR = 3.369, 95% CI: 1.392-8.152; p = 0.007) for abnormal FFRCT. CONCLUSION: MB significantly affects the FFRCT of distal coronary artery. For patients with MB without atherosclerosis, the MB length is a risk factor significantly affecting FFRCT, and for patients with MB accompanied by atherosclerosis, LAD stenotic severity is an independent risk factor for FFRCT.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Bridging , Humans , Computed Tomography Angiography/methods , Coronary Artery Disease/diagnostic imaging , Fractional Flow Reserve, Myocardial/physiology , Coronary Vessels/diagnostic imaging , Retrospective Studies , Myocardial Bridging/diagnostic imaging , Predictive Value of Tests , Coronary Stenosis/diagnostic imaging , Coronary Angiography/methods , Severity of Illness Index
20.
Article in English | MEDLINE | ID: mdl-38403735

ABSTRACT

There is inconsistent evidence for an association of obesity with white matter microstructural alterations. Such inconsistent findings may be related to the cumulative effects of obesity and alcohol dependence. This study aimed to investigate the possible interactions between alcohol dependence and overweight/obesity on white matter microstructure in the human brain. A total of 60 inpatients with alcohol dependence during early abstinence (44 normal weight and 16 overweight/obese) and 65 controls (42 normal weight and 23 overweight/obese) were included. The diffusion tensor imaging (DTI) measures [fractional anisotropy (FA) and radial diffusivity (RD)] of the white matter microstructure were compared between groups. We observed significant interactive effects between alcohol dependence and overweight/obesity on DTI measures in several tracts. The DTI measures were not significantly different between the overweight/obese and normal-weight groups (although widespread trends of increased FA and decreased RD were observed) among controls. However, among the alcohol-dependent patients, the overweight/obese group had widespread reductions in FA and widespread increases in RD, most of which significantly differed from the normal-weight group; among those with overweight/obesity, the alcohol-dependent group had widespread reductions in FA and widespread increases in RD, most of which were significantly different from the control group. This study found significant interactive effects between overweight/obesity and alcohol dependence on white matter microstructure, indicating that these two controllable factors may synergistically impact white matter microstructure and disrupt structural connectivity in the human brain.

SELECTION OF CITATIONS
SEARCH DETAIL