Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Oncogene ; 43(15): 1098-1112, 2024 Apr.
Article En | MEDLINE | ID: mdl-38388710

The non-canonical translation initiation factor EIF4G2 plays essential roles in cellular stress responses via translation of selective mRNA cohorts. Currently there is limited and conflicting information regarding its involvement in cancer development and progression. Here we assessed its role in endometrial cancer (EC), in a cohort of 280 EC patients across different types, grades, and stages, and found that low EIF4G2 expression highly correlated with poor overall- and recurrence-free survival in Grade 2 EC patients, monitored over a period of up to 12 years. To establish a causative connection between low EIF4G2 expression and cancer progression, we stably knocked-down EIF4G2 in two human EC cell lines in parallel. EIF4G2 depletion resulted in increased resistance to conventional therapies and increased the prevalence of molecular markers for aggressive cell subsets, altering their transcriptional and proteomic landscapes. Prominent among the proteins with decreased abundance were Kinesin-1 motor proteins, KIF5B and KLC1, 2, 3. Multiplexed imaging of the EC patient tumor cohort showed a correlation between decreased expression of the kinesin proteins, and poor survival in patients with tumors of certain grades and stages. These findings reveal potential novel biomarkers for Grade 2 EC with ramifications for patient stratification and therapeutic interventions.


Endometrial Neoplasms , Kinesins , Female , Humans , Kinesins/genetics , Proteomics , Cell Line , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism
2.
Life Sci Alliance ; 7(3)2024 Mar.
Article En | MEDLINE | ID: mdl-38129098

Tumor cells often exploit the protein translation machinery, resulting in enhanced protein expression essential for tumor growth. Since canonical translation initiation is often suppressed because of cell stress in the tumor microenvironment, non-canonical translation initiation mechanisms become particularly important for shaping the tumor proteome. EIF4G2 is a non-canonical translation initiation factor that mediates internal ribosome entry site (IRES)- and uORF-dependent initiation mechanisms, which can be used to modulate protein expression in cancer. Here, we explored the contribution of EIF4G2 to cancer by screening the COSMIC database for EIF4G2 somatic mutations in cancer patients. Functional examination of missense mutations revealed deleterious effects on EIF4G2 protein-protein interactions and, importantly, on its ability to mediate non-canonical translation initiation. Specifically, one mutation, R178Q, led to reductions in protein expression and near-complete loss of function. Two other mutations within the MIF4G domain specifically affected EIF4G2's ability to mediate IRES-dependent translation initiation but not that of target mRNAs with uORFs. These results shed light on both the structure-function of EIF4G2 and its potential tumor suppressor effects.


Neoplasms , Protein Biosynthesis , Humans , Protein Biosynthesis/genetics , Mutation/genetics , Neoplasms/genetics , Eukaryotic Initiation Factor-4G/genetics , Tumor Microenvironment
3.
Autophagy ; 19(8): 2372-2385, 2023 08.
Article En | MEDLINE | ID: mdl-37184247

Macroautophagy/autophagy is a catabolic process by which cytosolic content is engulfed, degraded and recycled. It has been implicated as a critical pathway in advanced stages of cancer, as it maintains tumor cell homeostasis and continuous growth by nourishing hypoxic or nutrient-starved tumors. Autophagy also supports alternative cellular trafficking pathways, providing a mechanism of non-canonical secretion of inflammatory cytokines. This opens a significant therapeutic opportunity for using autophagy inhibitors in cancer and acute inflammatory responses. Here we developed a high throughput compound screen to identify inhibitors of protein-protein interaction (PPI) in autophagy, based on the protein-fragment complementation assay (PCA). We chose to target the ATG12-ATG3 PPI, as this interaction is indispensable for autophagosome formation, and the analyzed structure of the interaction interface predicts that it may be amenable to inhibition by small molecules. We screened 41,161 compounds yielding 17 compounds that effectively inhibit the ATG12-ATG3 interaction in the PCA platform, and which were subsequently filtered by their ability to inhibit autophagosome formation in viable cells. We describe a lead compound (#189) that inhibited GFP-fused MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) puncta formation in cells with IC50 value corresponding to 9.3 µM. This compound displayed a selective inhibitory effect on the growth of autophagy addicted tumor cells and inhibited secretion of IL1B/IL-1ß (interleukin 1 beta) by macrophage-like cells. Compound 189 has the potential to be developed into a therapeutic drug and its discovery documents the power of targeting PPIs for acquiring specific and selective compound inhibitors of autophagy.Abbreviations: ANOVA: analysis of variance; ATG: autophagy related; CQ: chloroquine; GFP: green fluorescent protein; GLuc: Gaussia Luciferase; HEK: human embryonic kidney; IL1B: interleukin 1 beta; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; PCA: protein-fragment complementation assay; PDAC: pancreatic ductal adenocarcinoma; PMA: phorbol 12-myristate 13-acetate; PPI: protein-protein interaction. VCL: vinculin.


Autophagy , Pancreatic Neoplasms , Humans , Interleukin-1beta/pharmacology , Microtubule-Associated Proteins/metabolism , Autophagy-Related Proteins , Green Fluorescent Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Autophagy-Related Protein 12
4.
RNA ; 28(10): 1325-1336, 2022 10.
Article En | MEDLINE | ID: mdl-35961752

Death associated protein 5 (DAP5/eIF4G2/NAT1) is a member of the eIF4G translation initiation factors that has been shown to mediate noncanonical and/or cap-independent translation. It is essential for embryonic development and for differentiation of embryonic stem cells (ESCs), specifically its ability to drive translation of specific target mRNAs. In order to expand the repertoire of DAP5 target mRNAs, we compared ribosome profiles in control and DAP5 knockdown (KD) human ESCs (hESCs) to identify mRNAs with decreased ribosomal occupancy upon DAP5 silencing. A cohort of 68 genes showed decreased translation efficiency in DAP5 KD cells. Mass spectrometry confirmed decreased protein abundance of a significant portion of these targets. Among these was KMT2D, a histone methylase previously shown to be essential for ESC differentiation and embryonic development. We found that nearly half of the cohort of DAP5 target mRNAs displaying reduced translation efficiency of their main coding sequences upon DAP5 KD contained upstream open reading frames (uORFs) that are actively translated independently of DAP5. This is consistent with previously suggested mechanisms by which DAP5 mediates leaky scanning through uORFs and/or reinitiation at the main coding sequence. Crosslinking protein-RNA immunoprecipitation experiments indicated that a significant subset of DAP5 mRNA targets bound DAP5, indicating that direct binding between DAP5 protein and its target mRNAs is a frequent but not absolute requirement for DAP5-dependent translation of the main coding sequence. Thus, we have extended DAP5's function in translation of specific mRNAs in hESCs by a mechanism allowing translation of the main coding sequence following upstream translation of short ORFs.


Eukaryotic Initiation Factor-4G/metabolism , Human Embryonic Stem Cells , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Open Reading Frames/genetics , Protein Biosynthesis , Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Mol Carcinog ; 59(7): 713-723, 2020 07.
Article En | MEDLINE | ID: mdl-32391973

Chimeric antigen receptor (CAR) T-cells treatment demonstrate the increasing and powerful potential of immunotherapeutic strategies, as seen mainly for hematological malignancies. Still, efficient CAR-T cell approaches for the treatment of a broader spectrum of tumors are needed. It has been shown that cancer cells can implement strategies to evade immune response that include the expression of inhibitory ligands, such as hypersialylated proteins (sialoglycans) on their surface. These may be recognized by sialic acid-binding immunoglobulin-type lectins (siglecs) which are surface receptors found primarily on immune cells. In this regard, siglec-7 and -9 are found on immune cells, such as natural killer cells, T-cells, and dendritic cells and they can promote immune suppression when binding to sialic acids expressed on target cells. In the present study, we hypothesized that it is possible to use genetically engineered T-cells expressing siglec-based CARs, enabling them to recognize and eliminate tumor cells, in a non-histocompatibility complex molecule restricted way. Thus, we genetically modified human T-cells with different chimeric receptors based on the exodomain of human siglec-7 and -9 molecules and selected optimal receptors. We then assessed their antitumor activity in vitro demonstrating the recognition of cell lines from different histologies. These results were confirmed in a tumor xenograft model exemplifying the potential of the present approach. Overall, this study demonstrates the benefit of targeting cancer-associated glycosylation patterns using CAR based on native immune receptors and expressed in human primary T-cells.


Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Lectins/metabolism , Receptors, Antigen, T-Cell/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , T-Lymphocytes/metabolism , Animals , Cell Line , Cell Line, Tumor , Glycosylation , HEK293 Cells , HeLa Cells , Heterografts/metabolism , Humans , Jurkat Cells , K562 Cells , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred NOD , Mice, SCID
...