Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 73(9): 163, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954005

ABSTRACT

In addition to their immunosuppressive effect, cytostatics conditioning prior to adoptive therapy such as chimeric antigen receptor (CAR) T cells may play a role in debulking and remodeling the tumor microenvironment. We investigated in vitro the killing efficacy and impact of treosulfan and fludarabine on ovarian cancer cells expressing mesothelin (MSLN) and effect on MSLN-targeting CAR T cells. Treosulfan and fludarabine had a synergetic effect on killing of SKOV3 and OVCAR4 cells. Sensitivity to the combination of treosulfan and fludarabine was increased when SKOV3 cells expressed MSLN and when OVCAR4 cells were tested in hypoxia, while MSLN cells surface expression by SKOV3 and OVCAR4 cells was not altered after treosulfan or fludarabine exposure. Exposure to treosulfan or fludarabine (10 µM) neither impacted MSLN-CAR T cells degranulation, cytokines production upon challenge with MSLN + OVCAR3 cells, nor induced mitochondrial defects. Combination of treosulfan and fludarabine decreased MSLN-CAR T cells anti-tumor killing in normoxia but not hypoxia. In conclusion, treosulfan and fludarabine killed MSLN + ovarian cancer cells without altering MSLN-CAR T cells functions (at low cytostatics concentration) even in hypoxic conditions, and our data support the use of treosulfan and fludarabine as conditioning drugs prior to MSLN-CAR T cell therapy.


Subject(s)
Busulfan , GPI-Linked Proteins , Immunotherapy, Adoptive , Mesothelin , Ovarian Neoplasms , Receptors, Chimeric Antigen , Vidarabine , Vidarabine/analogs & derivatives , Vidarabine/pharmacology , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Busulfan/analogs & derivatives , Busulfan/pharmacology , Immunotherapy, Adoptive/methods , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
2.
Oncoimmunology ; 11(1): 2093426, 2022.
Article in English | MEDLINE | ID: mdl-35898704

ABSTRACT

Successful translation of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors has proved to be troublesome, mainly due to the complex tumor microenvironment promoting T cell dysfunction and antigen heterogeneity. Mesothelin (MSLN) has emerged as an attractive target for CAR T cell therapy of several solid malignancies, including ovarian cancer. To improve clinical response rates with MSLN-CAR T cells, a better understanding of the mechanisms impacting CAR T cell functionality in vitro is crucial. Here, we demonstrated superior cytolytic capacity of CD28-costimulated MSLN-CAR T cells (M28z) relative to 4-1BB-costimulated MSLN-CAR T cells (MBBz). Furthermore, CD28-costimulated MSLN CAR T cells displayed enhanced cytolytic capacity against tumor spheroids with heterogeneous MSLN expression compared to MBBz CAR T cells. In this study, we identified CAR-mediated trogocytosis as a potential impeding factor for successful MSLN-CAR T cell therapy due to fratricide killing and contributing to tumor antigen heterogeneity. Moreover, we link antigen-dependent upregulation of LAG-3 with reduced CAR T cell functionality. Taken together, our study highlights the therapeutic potential and bottlenecks of MSLN-CAR T cells, providing a rationale for combinatorial treatment strategies.


Subject(s)
Ovarian Neoplasms , T-Lymphocytes , CD28 Antigens/metabolism , Female , Humans , Mesothelin , Ovarian Neoplasms/therapy , Trogocytosis , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL