Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Front Immunol ; 13: 921606, 2022.
Article En | MEDLINE | ID: mdl-36177005

Human T-cell leukemia virus type-1 (HTLV-1) establishes a long-term persistent infection in humans and causes malignant T-cell leukemia, adult T-cell leukemia (ATL). HTLV-1-specific cytotoxic T lymphocytes have been suggested to play a major role in the immunosurveillance of HTLV-1-infected T cells. However, it remains unclear whether HTLV-1-specific functional antibodies are also involved in the host defense. To explore the role of antibodies in the course of HTLV-1 infection, we quantitated HTLV-1-specific neutralizing and antibody-dependent cellular cytotoxicity (ADCC)-inducing antibody levels in plasma from asymptomatic carriers (ACs) and ATL patients. The levels of neutralizing antibodies, as determined by a syncytium inhibition assay, were significantly lower in acute and chronic ATL patients than in ACs. The levels of ADCC-inducing activity were tested using an autologous pair of HTLV-1-producing cells and cultured natural killer (NK) cells, which showed that the ADCC-inducing activity of IgG at a concentration of 100 µg/ml was comparable between ACs and acute ATL patients. The anti-gp46 antibody IgG levels, determined by ELISA, correlated with those of the neutralizing and ADCC-inducing antibodies. In contrast, the proviral loads did not correlate with any of these antibody levels. NK cells and a monoclonal anti-gp46 antibody reduced the number of HTLV-1 Tax-expressing cells in cultured peripheral blood mononuclear cells from patients with aggressive ATL. These results suggest a protective role for HTLV-1 neutralizing and ADCC-inducing antibodies during the course of HTLV-1 infection.


HTLV-I Infections , Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Adult , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Cell Cytotoxicity , Humans , Immunoglobulin G , Leukocytes, Mononuclear
2.
Cancer Gene Ther ; 29(11): 1570-1577, 2022 11.
Article En | MEDLINE | ID: mdl-35459881

A massive increase in the number of mature CD4+ T-cells in peripheral blood (PB) is a defining characteristic of acute type of adult T-cell leukemia (ATL). To date, the site of proliferation of ATL cells in the body has been unclear. In an attempt to address this question, we examined the expression of the proliferation marker, Ki-67, in freshly isolated ATL cells from PB and lymph nodes (LNs) of patients with various types of ATL. Our findings reveal that LN-ATL cells display higher expression of the Ki-67 antigen than PB-ATL cells in acute type patients. The gene expression of T-cell quiescence regulators such as Krüppel-like factor 2/6 and forkhead box protein 1 was substantially high in acute type PB-ATL cells. The expression of human telomerase reverse transcriptase, which is involved in T-cell expansion, was significantly low in PB-ATL cells from acute type patients, similar to that in normal resting T-cells. These findings suggest that ATL cells proliferate in the LNs rather than in PB.


Leukemia-Lymphoma, Adult T-Cell , Humans , Adult , Leukemia-Lymphoma, Adult T-Cell/genetics , Leukemia-Lymphoma, Adult T-Cell/pathology , Lymph Nodes/metabolism , Lymph Nodes/pathology , T-Lymphocytes/metabolism , Forkhead Transcription Factors , Cell Proliferation
3.
Viruses ; 14(4)2022 04 03.
Article En | MEDLINE | ID: mdl-35458481

Adult T-cell leukemia/lymphoma (ATL) cells express TNF receptor type-2 (TNFR2) on their surface and shed its soluble form (sTNFR2). We previously reported that sTNFR2 levels were highly elevated in the plasma of patients with acute ATL. To investigate whether its quantitation would be helpful for the diagnosis or prediction of the onset of acute ATL, we examined the plasma levels of sTNFR2 in a large number of specimens obtained from a cohort of ATL patients and asymptomatic human T-cell leukemia virus type 1 (HTLV-1) carriers (ACs) and compared them to those of other candidate ATL biomarkers (sCD25, sOX40, and IL-10) by enzyme-linked immunosorbent assays (ELISA) and HTLV-1 proviral loads. We observed that sTNFR2 levels were significantly elevated in acute ATL patients compared to ACs and patients with other types of ATL (chronic, smoldering, and lymphoma). Importantly, sTNFR2 levels were significantly correlated with those of sCD25, sOX40, and IL-10, as well as proviral loads. Thus, the present study confirmed that an increase in plasma sTNFR2 levels is a biomarker for the diagnosis of acute ATL. Examination of plasma sTNFR2 alone or in combination with other ATL biomarkers may be helpful for the diagnosis of acute ATL.


HTLV-I Infections , Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Adult , Biomarkers/analysis , HTLV-I Infections/diagnosis , Humans , Interleukin-10/blood , Leukemia-Lymphoma, Adult T-Cell/diagnosis , Proviruses , Receptors, OX40/blood , Receptors, Tumor Necrosis Factor, Type II/blood
4.
Biochem Biophys Rep ; 26: 100984, 2021 Jul.
Article En | MEDLINE | ID: mdl-33768169

Constitutive expression of human telomerase reverse transcriptase (hTERT) with DNA methylation of its promoter is a common phenomenon in tumor cells. We recently found that the transcriptional factor Krüppel-like factor 2 (KLF2) binds to the CpG sequences in the hTERT promoter and inhibits hTERT gene expression in normal resting T-cells. The human T-cell line Kit 225 in the resting phase induced by the deprivation of interleukin (IL)-2 showed no decrease in the expression of hTERT, despite the high expression of KLF2. To elucidate the mechanisms of deregulation of hTERT expression in T-cells, we examined the relationship between DNA methylation and KLF2 binding to the hTERT promoter. The hTERT promoter was methylated in Kit 225 cells, resulting in the inhibition of the binding of KLF2 to the promoter. DNA demethylation by the reagent Zebularine recovered KLF2 binding to the hTERT promoter, followed by the downregulation of its gene expression. These findings indicate that the repressive effect of KLF2 on hTERT gene expression is abolished by DNA methylation in T-cell lines.

5.
Life Sci Alliance ; 3(3)2020 03.
Article En | MEDLINE | ID: mdl-32029570

Mitochondria play a central role in the function of brown adipocytes (BAs). Although mitochondrial biogenesis, which is indispensable for thermogenesis, is regulated by coordination between nuclear DNA transcription and mitochondrial DNA transcription, the molecular mechanisms of mitochondrial development during BA differentiation are largely unknown. Here, we show the importance of the ER-resident sensor PKR-like ER kinase (PERK) in the mitochondrial thermogenesis of brown adipose tissue. During BA differentiation, PERK is physiologically phosphorylated independently of the ER stress. This PERK phosphorylation induces transcriptional activation by GA-binding protein transcription factor α subunit (GABPα), which is required for mitochondrial inner membrane protein biogenesis, and this novel role of PERK is involved in maintaining the body temperatures of mice during cold exposure. Our findings demonstrate that mitochondrial development regulated by the PERK-GABPα axis is indispensable for thermogenesis in brown adipose tissue.


Adipose Tissue, Brown/metabolism , Endoplasmic Reticulum/metabolism , eIF-2 Kinase/metabolism , Adipocytes, Brown/metabolism , Animals , Cell Differentiation/genetics , DNA, Mitochondrial/metabolism , Female , Male , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Organelle Biogenesis , Phosphorylation , Signal Transduction/genetics , Thermogenesis/physiology , Transcription, Genetic/genetics
6.
Pathogens ; 9(2)2020 Jan 27.
Article En | MEDLINE | ID: mdl-32012672

Approximately one-tenth of the 10 million individuals living with human T-cell leukemia virus type-1 (HTLV-1) worldwide live in Japan. Most of these infected individuals live in the southwest region of Japan, including Okinawa prefecture; however, currently no prophylactic vaccine against HTLV-1 infection is available. For preventing the HTLV-1 spread, we previously generated a humanized monoclonal antibody (hu-LAT-27) that mediates both neutralization and antibody-dependent cellular cytotoxicity (ADCC). The neutralization epitope of LAT-27 is a linear amino acid sequence from residue 191 to 196 (Leu-Pro-His-Ser-Asn-Leu) of the HTLV-1 envelope gp46 protein. Here, we found that the LAT-27 epitope is well conserved among HTLV-1 clinical isolates prevalent in Okinawa. The hu-LAT-27 treatment inhibited syncytium formation by these clinical HTLV-1 isolates. Although an amino acid substitution at residue 192 in the LAT-27 epitope from proline to serine was found in a few HTLV-1 isolates, hu-LAT-27 could still react with a synthetic peptide carrying this amino acid substitution. These findings demonstrate the wide spectrum of hu-LAT-27 reactivity, suggesting that hu-LAT-27 may be a candidate drug for prophylactic passive immunization against HTLV-1 infection.

7.
PLoS One ; 11(2): e0148217, 2016.
Article En | MEDLINE | ID: mdl-26829041

Tax1 encoded by the human T-cell leukemia virus type 1 (HTLV-1) has been believed to dysregulate the expression of cellular genes involved in cell survival and mortality, leading to the development of adult T-cell leukemia (ATL). The function of Tax1 in ATL development however is still controversial, primarily because Tax1 induces cell cycle progression and apoptosis. To systemically understand cell growth phase-dependent induction of cell survival or cell death by Tax1, we established a single experimental system using an interleukin 2 (IL-2)-dependent human T-cell line Kit 225 that can be forced into resting phase by IL-2 deprivation. Introduction of Tax1 and HTLV-2 Tax (Tax2B) decreased mitochondrial activity alongside apoptosis in growing cells but not in resting cells. Cell cycle profile analysis indicated that Tax1 and Tax2B were likely to perturb the S phase in growing cells. Studies with Tax1 mutants and siRNA for NF-κB/RelA revealed that Tax1-mediated cell growth inhibition and apoptosis in growing Kit 225 cells depend on RelA. Interestingly, inactivation of the non-canonical NF-κB and p38 MAPK pathways relieved Tax1-mediated apoptosis, suggesting that the Tax1-NF-κB-p38 MAPK axis may be associated with apoptosis in growing cells. Inflammatory mediators such as CCL3 and CCL4, which are involved in oncogene-induced senescence (OIS), were induced by Tax1 and Tax2B in growing cells. In contrast, RelA silencing in resting cells reduced mitochondrial activity, indicating that NF-κB/RelA is also critical for Tax1-mediated cell survival. These findings suggest that Tax1-mediated cell survival and death depend on the cell growth phase. Both effects of Tax1 may be implicated in the long latency of HTLV-1 infection.


Gene Products, tax , Human T-lymphotropic virus 1/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/virology , Adult , Cell Cycle/genetics , Cell Death , Cell Proliferation , Cell Survival , Chemokines/metabolism , Gene Expression Regulation , Humans , MAP Kinase Signaling System , Mutant Proteins/metabolism , T-Lymphocytes/enzymology , Transcription Factor RelA/metabolism
8.
Virus Genes ; 52(1): 4-13, 2016 Feb.
Article En | MEDLINE | ID: mdl-26739459

Human T-cell leukemia virus type 1 (HTLV-1) is a causative retrovirus of adult T-cell leukemia and HTLV-1-associated myelopathy. Unlike HTLV-1, the same group of retrovirus HTLV-2 has not been found to be associated with these diseases. HTLV-1 and HTLV-2 encode transforming proteins Tax1 and Tax2, and a few distinct activities of Tax1 from those of Tax2 have been proposed to contribute to the HTLV-1-specific pathogenesis of disease. One significant difference of Tax1 from Tax2 is the activation of transcription factor NF-κB2/p100/p52. We found that Tax1 but not Tax2 induces the expression of OX40 ligand (OX40L) in a human T-cell line. To induce the OX40L expression, Tax1 but not Tax2 was observed to interact with NF-κB2/p100/p52 and RelB and the distinct interaction activity was mediated by the Tax1 amino acid region of 225-232. In addition, Tax1 but not Tax2 or Tax1/225-232 interacted with p65, p50, and c-Rel; however, the interactions were much less than those noted with NF-κB2/p100/p52 and RelB. OX40L is a T-cell costimulatory molecule of the tumor necrosis factor family, and its signal plays a critical role in establishing adaptive immunity by inducing the polarized differentiation of T-cells to cells such as T helper type 2 and T follicular helper cells. Therefore, the present findings suggest that Tax1 might alter the immune response to HTLV-1 and/or differentiation of HTLV-1-infected T-cells via OX40L induction, thereby acting as a factor mediating the distinct phenotypes and pathogenesis of HTLV-1 from that of HTLV-2.


Gene Products, tax/metabolism , Human T-lymphotropic virus 1/physiology , Human T-lymphotropic virus 2/physiology , NF-kappa B p52 Subunit/metabolism , OX40 Ligand/biosynthesis , HEK293 Cells , Human T-lymphotropic virus 1/immunology , Human T-lymphotropic virus 2/immunology , Humans , Jurkat Cells , T-Lymphocytes/immunology , T-Lymphocytes/virology
9.
Retrovirology ; 12: 56, 2015 Jul 01.
Article En | MEDLINE | ID: mdl-26129803

BACKGROUND: CD83, a cell surface glycoprotein that is stably expressed on mature dendritic cells, can be transiently induced on other hematopoietic cell lineages upon cell activation. In contrast to the membrane form of CD83, soluble CD83 appears to be immunosuppressive. In an analysis of the phenotype of leukemic CD4(+) T cells from patients with adult T-cell leukemia (ATL), we found that a number of primary CD4(+) T cells became positive for cell surface CD83 after short-term culture, and that most of these CD83(+) CD4(+) T cells were positive for human T-cell leukemia virus type-I (HTLV-I) Tax (Tax1). We hypothesized that Tax1 is involved in the induction of CD83. RESULT: We found that CD83 was expressed selectively on Tax1-expressing human CD4(+) T cells in short-term cultured peripheral blood mononuclear cells (PBMCs) isolated from HTLV-I(+) donors, including ATL patients and HTLV-I carriers. HTLV-I-infected T cell lines expressing Tax1 also expressed cell surface CD83 and released soluble CD83. CD83 can be expressed in the JPX-9 cell line by cadmium-mediated Tax1 induction and in Jurkat cells or PBMCs by Tax1 introduction via infection with a recombinant adenovirus carrying the Tax1 gene. The CD83 promoter was activated by Tax1 in an NF-κB-dependent manner. Based on a previous report showing soluble CD83-mediated prostaglandin E2 (PGE2) production from human monocytes in vitro, we tested if PGE2 affected HTLV-I propagation, and found that PGE2 strongly stimulated expression of Tax1 and viral structural molecules. CONCLUSIONS: Our results suggest that HTLV-I induces CD83 expression on T cells via Tax1 -mediated NF-κB activation, which may promote HTLV-I infection in vivo.


Antigens, CD/biosynthesis , Gene Expression , Gene Products, tax/metabolism , Host-Pathogen Interactions , Human T-lymphotropic virus 1/physiology , Immunoglobulins/biosynthesis , Membrane Glycoproteins/biosynthesis , T-Lymphocytes/immunology , T-Lymphocytes/virology , Humans , NF-kappa B/metabolism , CD83 Antigen
10.
J Biol Chem ; 290(14): 8758-63, 2015 Apr 03.
Article En | MEDLINE | ID: mdl-25694435

In normal human T cells, telomerase activity is strictly regulated. T cells are thought to express telomerase to avoid replicative senescence, unlike most normal somatic cells with definite replicative lifespan. T cells in blood and tissues are usually in a state of quiescence without expression of the limiting catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT). In contrast to activation, repression of hTERT transcription has not been studied well. Our previous studies have found an hTERT promoter element with repressive function. Here we identified KLF2, which represses hTERT transcription by binding to the putative promoter element. KLF2 and hTERT exhibited reciprocal mRNA expression patterns in primary human T cells. In activated T cells, KLF2 binding to the hTERT promoter was eliminated, relieving the repression of hTERT transcription found in resting T cells. Our results suggest that KLF2 is involved in strict repression of hTERT expression through binding to the promoter in primary human T cells.


Kruppel-Like Transcription Factors/physiology , T-Lymphocytes/enzymology , Telomerase/metabolism , Transcription, Genetic/physiology , Base Sequence , Blotting, Western , Catalytic Domain , Cells, Cultured , DNA Primers , Electrophoretic Mobility Shift Assay , Humans , Kruppel-Like Transcription Factors/genetics , Polymerase Chain Reaction , RNA, Small Interfering/genetics , Telomerase/chemistry , Telomerase/genetics
11.
Virology ; 443(2): 226-35, 2013 Sep 01.
Article En | MEDLINE | ID: mdl-23791017

Human T-cell leukemia virus type 1 (HTLV-1) Tax (Tax1) plays crucial roles in leukemogenesis in part through activation of NF-κB. In this study, we demonstrated that Tax1 activated an NF-κB binding (gpκB) site of the gp34/OX40 ligand gene in a cell type-dependent manner. Our examination showed that the gpκΒ site and authentic NF-κB (IgκB) site were activated by Tax1 in hematopoietic cell lines. Non-hematopoietic cell lines including hepatoma and fibroblast cell lines were not permissive to Tax1-mediated activation of the gpκB site, while the IgκB site was activated in those cells in association with binding of RelB. However RelA binding was not observed in the gpκB and IgκB sites. Our results suggest that HTLV-1 Tax1 fails to activate the canonical pathway of NF-κB in non-hematopoietic cell lines. Cell type-dependent activation of NF-κB by Tax1 could be associated with pathogenesis by HTLV-1 infection.


Gene Products, tax/metabolism , Human T-lymphotropic virus 1/pathogenicity , Lymphocytes/virology , NF-kappa B/metabolism , Transcriptional Activation , Cell Line , HeLa Cells , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Humans , Jurkat Cells , NF-kappa B/chemistry , NF-kappa B/genetics , OX40 Ligand/genetics , OX40 Ligand/metabolism , Promoter Regions, Genetic , Receptors, OX40/genetics , Receptors, OX40/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
12.
J Biol Chem ; 284(38): 25501-11, 2009 Sep 18.
Article En | MEDLINE | ID: mdl-19617351

At the incipient stages of the development of adult T-cell leukemia, T-cells infected with human T-cell leukemia virus type 1 (HTLV-1) suffer disregulation in cell growth caused by aberrant expression of host genes by the HTLV-1 transactivator protein Tax (Tax1). Tax1-mediated growth promotion is thought to result from, at least in part, up-regulation of genes for growth factors and their receptors that induce T-cell growth. In the present study, we demonstrate that Tax1 transactivates the interleukin-21 (IL-21) and its receptor (IL-21R) genes in human T-cells. Introduction of Tax1 via recombinant adenoviruses induced expression of endogenous IL-21 and IL-21R. Isolated promoters of the IL-21 and IL-21R genes were activated by Tax1 in reporter assays, which further revealed that there were at least two Tax1-responsive elements in either the IL-21 promoter or the IL-21R promoter. Chromatin immunoprecipitation assay and gel mobility shift assay exhibited that the IL-21 promoter elements bound transcription factors AP-1 and NF-kappaB, and the IL-21R promoter elements were associated with AP-1 and interferon regulatory factor. Collectively, Tax1-dependent activation of these transcriptional factors presumably contributes to expression of the IL-21 gene and its receptor gene. The related virus HTLV-2 with Tax2 similar to Tax1 is known not to be pathogenic. Tax2 exhibited little, if any, or no induction of the IL-21 transcription in CD4+ T-cells, in contrast to Tax1. The study suggests insights into cytokine-dependent aberrant growth of HTLV-1-infected T-cells and the molecular basis of different pathogenicity between HTLV-1 and HTLV-2.


CD4-Positive T-Lymphocytes/metabolism , Gene Products, tax/metabolism , Human T-lymphotropic virus 1/metabolism , Interleukin-21 Receptor alpha Subunit/biosynthesis , Interleukins/biosynthesis , Response Elements , Transcriptional Activation , Adenoviridae , CD4-Positive T-Lymphocytes/virology , Gene Products, tax/genetics , HTLV-I Infections/genetics , HTLV-I Infections/metabolism , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/pathogenicity , Human T-lymphotropic virus 2/genetics , Human T-lymphotropic virus 2/metabolism , Human T-lymphotropic virus 2/pathogenicity , Humans , Interleukin-21 Receptor alpha Subunit/genetics , Interleukins/genetics , Jurkat Cells , NF-kappa B/genetics , NF-kappa B/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transduction, Genetic
...