Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(6): e0085923, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37819084

ABSTRACT

IMPORTANCE: In the past, studies have focused on bacterial pathogenicity in mono-species infections, in part ignoring the clinical relevance of diseases caused by more than one pathogen (i.e., polymicrobial infections). However, it is now common knowledge that multiple bacteria species are often involved in the course of an infection. For treatment of such infections, it is absolutely important to understand the dynamics of species interactions at possible infection sites and the molecular mechanisms behind these interactions. Here, we studied the impact of Stenotrophomonas maltophilia on its commensals Pseudomonas aeruginosa and Staphylococcus aureus in multispecies biofilms. We analyzed the 3D structural architectures of dual- and triple-species biofilms, niche formation within the biofilms, and the interspecies interactions on a molecular level. RNAseq data identified key genes involved in multispecies biofilm formation and interaction as potential drug targets for the clinical combat of multispecies infection with these major pathogens.


Subject(s)
Pseudomonas Infections , Staphylococcal Infections , Stenotrophomonas maltophilia , Humans , Pseudomonas aeruginosa/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Stenotrophomonas maltophilia/genetics , Transcriptome , Staphylococcal Infections/microbiology , Biofilms
2.
Biomedicines ; 11(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37893014

ABSTRACT

Biofilms are a major problem in hard-to-heal wounds. Moreover, they are composed of different species and are often tolerant to antimicrobial agents. At the same time, interspecific synergy and/or competition occurs when some bacterial species clash. For this reason, the tolerance of two dual-species wound biofilm models of Pseudomonas aeruginosa and Staphylococcus aureus or Enterococcus faecium against antimicrobials and antimicrobial dressings were analyzed quantitatively and by confocal laser scanning microscopy (CLSM). The results were compared to findings with planktonic bacteria. Octenidine-dihydrochloride/phenoxyethanol and polyhexamethylene biguanide (PHMB) irrigation solutions showed a significant, albeit delayed reduction in biofilm bacteria, while the PHMB dressing was not able to induce this effect. However, the cadexomer-iodine dressing caused a sustained reduction in and killed almost all bacteria down to 102 cfu/mL within 6 days compared to the control (1010 cfu/mL). By means of CLSM in untreated human biofilm models, it became evident that P. aeruginosa dominates over E. faecium and S. aureus. Additionally, P. aeruginosa appeared as a vast layer at the bottom of the samples, while S. aureus formed grape-like clusters. In the second model, the distribution was even clearer. Only a few E. faecium were visible, in contrast to the vast layer of P. aeruginosa. It seems that the different species avoid each other and seek their respective niches. These mixed-species biofilm models showed that efficacy and tolerance to antimicrobial substances are nearly species-independent. Their frequent application appears to be important. The bacterial wound biofilm remains a challenge in treatment and requires new, combined therapy options.

3.
Microbiol Spectr ; 10(3): e0258221, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35471093

ABSTRACT

Stenotrophomonas maltophilia is a multidrug-resistant human opportunistic pathogen. S. maltophilia contributes to disease progression in cystic fibrosis patients and is found in wounds and infected tissues and on catheter surfaces. Due to its well-known multidrug resistance, it is difficult to treat S. maltophilia infections. Strain-specific susceptibility to antimicrobials has also been reported in several studies. Recently, three fungal diorcinols and 14 rubrolides were shown to reduce S. maltophilia K279a biofilm formation. Based on these initial findings, we were interested to extend this approach by testing a larger number of diorcinols and rubrolides and to understand the molecular mechanisms behind the observed antibiofilm effects. Of 52 tested compounds, 30 were able to significantly reduce the biofilm thickness by up to 85% ± 15% and had strong effects on mature biofilms. All compounds with antibiofilm activity also significantly affected the biofilm architecture. Additional RNA-sequencing data of diorcinol- and rubrolide-treated biofilm cells of two clinical isolates (454 and K279) identified a small set of shared genes that were affected by these potent antibiofilm compounds. Among these, genes for iron transport, general metabolism, and membrane biosynthesis were most strongly and differentially regulated. A further hierarchical clustering and detailed structural inspection of the diorcinols and rubrolides implied that a prenyl group as side chain of one of the phenyl groups of the diorcinols and an increasing degree of bromination of chlorinated rubrolides were possibly the cause of the strong antibiofilm effects. This study gives a deep insight into the effects of rubrolides and diorcinols on biofilms formed by the important global pathogen S. maltophilia. IMPORTANCE Combating Stenotrophomonas maltophilia biofilms in clinical and industrial settings has proven to be challenging. S. maltophilia is multidrug resistant, and occurrence of resistance to commonly used drugs as well as to antibiotic combinations, such as trimethoprim-sulfamethoxazole, is now frequently reported. It is therefore now necessary to look beyond conventional and already existing antimicrobial drugs when battling S. maltophilia biofilms. Our study contains comprehensive and detailed data sets for diorcinol and rubrolide-treated S. maltophilia biofilms. The study defines genes and pathways affected by treatment with these different compounds. These results, together with the identified structural elements that may be crucial for their antibiofilm activity, build a strong backbone for further research on diorcinols and rubrolides as novel and potent antibiofilm compounds.


Subject(s)
Gram-Negative Bacterial Infections , Stenotrophomonas maltophilia , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Gram-Negative Bacterial Infections/microbiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...