Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nat Methods ; 21(3): 401-405, 2024 Mar.
Article En | MEDLINE | ID: mdl-38317008

Unique molecular identifiers are random oligonucleotide sequences that remove PCR amplification biases. However, the impact that PCR associated sequencing errors have on the accuracy of generating absolute counts of RNA molecules is underappreciated. We show that PCR errors are a source of inaccuracy in both bulk and single-cell sequencing data, and synthesizing unique molecular identifiers using homotrimeric nucleotide blocks provides an error-correcting solution that allows absolute counting of sequenced molecules.


High-Throughput Nucleotide Sequencing , Nucleotides , Sequence Analysis, RNA , Oligonucleotides/genetics , Polymerase Chain Reaction
2.
Bioinformatics ; 39(7)2023 07 01.
Article En | MEDLINE | ID: mdl-37432342

MOTIVATION: Alternative splicing (AS) of introns from pre-mRNA produces diverse sets of transcripts across cell types and tissues, but is also dysregulated in many diseases. Alignment-free computational methods have greatly accelerated the quantification of mRNA transcripts from short RNA-seq reads, but they inherently rely on a catalog of known transcripts and might miss novel, disease-specific splicing events. By contrast, alignment of reads to the genome can effectively identify novel exonic segments and introns. Event-based methods then count how many reads align to predefined features. However, an alignment is more expensive to compute and constitutes a bottleneck in many AS analysis methods. RESULTS: Here, we propose fortuna, a method that guesses novel combinations of annotated splice sites to create transcript fragments. It then pseudoaligns reads to fragments using kallisto and efficiently derives counts of the most elementary splicing units from kallisto's equivalence classes. These counts can be directly used for AS analysis or summarized to larger units as used by other widely applied methods. In experiments on synthetic and real data, fortuna was around 7× faster than traditional align and count approaches, and was able to analyze almost 300 million reads in just 15 min when using four threads. It mapped reads containing mismatches more accurately across novel junctions and found more reads supporting aberrant splicing events in patients with autism spectrum disorder than existing methods. We further used fortuna to identify novel, tissue-specific splicing events in Drosophila. AVAILABILITY AND IMPLEMENTATION: fortuna source code is available at https://github.com/canzarlab/fortuna.


Autism Spectrum Disorder , Humans , Sequence Analysis, RNA/methods , RNA Splicing , Alternative Splicing , Software
3.
eNeuro ; 9(5)2022.
Article En | MEDLINE | ID: mdl-36216507

Dendritic spines are submicron, subcellular compartments whose shape is defined by actin filaments and associated proteins. Accurately mapping the cytoskeleton is a challenge, given the small size of its components. It remains unclear whether the actin-associated structures analyzed in dendritic spines of neurons in vitro apply to dendritic spines of intact, mature neurons in situ. Here, we combined advanced preparative methods with multitilt serial section electron microscopy (EM) tomography and computational analysis to reveal the full three-dimensional (3D) internal architecture of spines in the intact brains of male mice at nanometer resolution. We compared hippocampal (CA1) pyramidal cells and cerebellar Purkinje cells in terms of the length distribution and connectivity of filaments, their branching-angles and absolute orientations, and the elementary loops formed by the network. Despite differences in shape and size across spines and between spine heads and necks, the internal organization was remarkably similar in both neuron types and largely homogeneous throughout the spine volume. In the tortuous mesh of highly branched and interconnected filaments, branches exhibited no preferred orientation except in the immediate vicinity of the cell membrane. We found that new filaments preferentially split off from the convex side of a bending filament, consistent with the behavior of Arp2/3-mediated branching of actin under mechanical deformation. Based on the quantitative analysis, the spine cytoskeleton is likely subject to considerable mechanical force in situ.


Actins , Dendritic Spines , Animals , Male , Mice , Dendritic Spines/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Hippocampus/metabolism , Neurons/metabolism
4.
Nucleic Acids Res ; 50(10): 5565-5576, 2022 06 10.
Article En | MEDLINE | ID: mdl-35640578

Heterochromatic silencing is thought to occur through a combination of transcriptional silencing and RNA degradation, but the relative contribution of each pathway is not known. In this study, we analyzed RNA Polymerase II (RNA Pol II) occupancy and levels of nascent and steady-state RNA in different mutants of Schizosaccharomyces pombe, in order to quantify the contribution of each pathway to heterochromatic silencing. We found that transcriptional silencing consists of two components, reduced RNA Pol II accessibility and, unexpectedly, reduced transcriptional efficiency. Heterochromatic loci showed lower transcriptional output compared to euchromatic loci, even when comparable amounts of RNA Pol II were present in both types of regions. We determined that the Ccr4-Not complex and H3K9 methylation are required for reduced transcriptional efficiency in heterochromatin and that a subset of heterochromatic RNA is degraded more rapidly than euchromatic RNA. Finally, we quantified the contribution of different chromatin modifiers, RNAi and RNA degradation to each silencing pathway. Our data show that several pathways contribute to heterochromatic silencing in a locus-specific manner and reveal transcriptional efficiency as a new mechanism of silencing.


Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Gene Silencing , Heterochromatin/genetics , Heterochromatin/metabolism , RNA/metabolism , RNA Interference , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA-Binding Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
...