Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Malar J ; 23(1): 153, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762448

ABSTRACT

BACKGROUND: The attractive targeted sugar bait (ATSB) is a novel malaria vector control tool designed to attract and kill mosquitoes using a sugar-based bait, laced with oral toxicant. Western Province, Zambia, was one of three countries selected for a series of phase III cluster randomized controlled trials of the Westham ATSB Sarabi version 1.2. The trial sites in Kenya, Mali, and Zambia were selected to represent a range of different ecologies and malaria transmission settings across sub-Saharan Africa. This case study describes the key characteristics of the ATSB Zambia trial site to allow for interpretation of the results relative to the Kenya and Mali sites. METHODS: This study site characterization incorporates data from the trial baseline epidemiological and mosquito sugar feeding surveys conducted in 2021, as well as relevant literature on the study area. RESULTS: CHARACTERIZATION OF THE TRIAL SITE: The trial site in Zambia was comprised of 70 trial-designed clusters in Kaoma, Nkeyema, and Luampa districts. Population settlements in the trial site were dispersed across a large geographic area with sparsely populated villages. The overall population density in the 70 study clusters was 65.7 people per square kilometre with a total site population of 122,023 people living in a geographic area that covered 1858 square kilometres. However, the study clusters were distributed over a total area of approximately 11,728 square kilometres. The region was tropical with intense and seasonal malaria transmission. An abundance of trees and other plants in the trial site were potential sources of sugar meals for malaria vectors. Fourteen Anopheles species were endemic in the site and Anopheles funestus was the dominant vector, likely accounting for around 95% of all Plasmodium falciparum malaria infections. Despite high coverage of indoor residual spraying and insecticide-treated nets, the baseline malaria prevalence during the peak malaria transmission season was 50% among people ages six months and older. CONCLUSION: Malaria transmission remains high in Western Province, Zambia, despite coverage with vector control tools. New strategies are needed to address the drivers of malaria transmission in this region and other malaria-endemic areas in sub-Saharan Africa.


Subject(s)
Anopheles , Malaria , Mosquito Control , Mosquito Vectors , Sugars , Zambia , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Mosquito Vectors/drug effects , Animals , Anopheles/drug effects , Anopheles/physiology , Humans , Malaria/prevention & control , Malaria/transmission , Female , Insecticides/pharmacology
2.
BMC Infect Dis ; 22(1): 121, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35120441

ABSTRACT

BACKGROUND: A new more highly sensitive rapid diagnostic test (HS-RDT) for Plasmodium falciparum malaria (Alere™/Abbott Malaria Ag P.f RDT [05FK140], now called NxTek™ Eliminate Malaria Ag Pf) was launched in 2017. The test has already been used in many research studies in a wide range of geographies and use cases. METHODS: In this study, we collate all published and available unpublished studies that use the HS-RDT and assess its performance in (i) prevalence surveys, (ii) clinical diagnosis, (iii) screening pregnant women, and (iv) active case detection. Two individual-level data sets from asymptomatic populations are used to fit logistic regression models to estimate the probability of HS-RDT positivity based on histidine-rich protein 2 (HRP2) concentration and parasite density. The performance of the HS-RDT in prevalence surveys is estimated by calculating the sensitivity and positive proportion in comparison to polymerase chain reaction (PCR) and conventional malaria RDTs. RESULTS: We find that across 18 studies, in prevalence surveys, the mean sensitivity of the HS-RDT is estimated to be 56.1% (95% confidence interval [CI] 46.9-65.4%) compared to 44.3% (95% CI 32.6-56.0%) for a conventional RDT (co-RDT) when using nucleic acid amplification techniques as the reference standard. In studies where prevalence was estimated using both the HS-RDT and a co-RDT, we found that prevalence was on average 46% higher using a HS-RDT compared to a co-RDT. For use in clinical diagnosis and screening pregnant women, the HS-RDT was not significantly more sensitive than a co-RDT. CONCLUSIONS: Overall, the evidence presented here suggests that the HS-RDT is more sensitive in asymptomatic populations and could provide a marginal improvement in clinical diagnosis and screening pregnant women. Although the HS-RDT has limited temperature stability and shelf-life claims compared to co-RDTs, there is no evidence to suggest, given this test has the same cost as current RDTs, it would have any negative impacts in terms of malaria misdiagnosis if it were widely used in all four population groups explored here.


Subject(s)
Malaria, Falciparum , Malaria , Antigens, Protozoan , Cross-Sectional Studies , Diagnostic Tests, Routine , Female , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Pregnancy , Protozoan Proteins , Sensitivity and Specificity
3.
J Infect Dis ; 225(8): 1415-1423, 2022 04 19.
Article in English | MEDLINE | ID: mdl-32691047

ABSTRACT

BACKGROUND: In 2016, the Zambian National Malaria Elimination Centre started programmatic mass drug administration (pMDA) campaigns with dihydroartemisinin-piperaquine as a malaria elimination tool in Southern Province. Two rounds were administered, 2 months apart (coverage 70% and 57%, respectively). We evaluated the impact of 1 year of pMDA on malaria incidence using routine data. METHODS: We conducted an interrupted time series with comparison group analysis on monthly incidence data collected at the health facility catchment area (HFCA) level, with a negative binomial model using generalized estimating equations. Programmatic mass drug administration was conducted in HFCAs with greater than 50 cases/1000 people per year. Ten HFCAs with incidence rates marginally above this threshold (pMDA group) were compared with 20 HFCAs marginally below (comparison group). RESULTS: The pMDA HFCAs saw a 46% greater decrease in incidence at the time of intervention than the comparison areas (incidence rate ratio = 0.536; confidence interval = 0.337-0.852); however, incidence increased toward the end of the season. No HFCAs saw a transmission interruption. CONCLUSIONS: Programmatic mass drug administration, implemented during 1 year with imperfect coverage in low transmission areas with suboptimal vector control coverage, significantly reduced incidence. However, elimination will require additional tools. Routine data are important resources for programmatic impact evaluations and should be considered for future analyses.


Subject(s)
Antimalarials , Malaria , Antimalarials/therapeutic use , Humans , Incidence , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Mass Drug Administration , Zambia/epidemiology
4.
PLOS Glob Public Health ; 2(12): e0001295, 2022.
Article in English | MEDLINE | ID: mdl-36962857

ABSTRACT

Efforts to eliminate malaria transmission need evidence-based strategies. However, accurately assessing end-game malaria elimination strategies is challenging due to the low level of transmission and the rarity of infections. We hypothesised that presumptively treating individuals during reactive case detection (RCD) would reduce transmission and that serology would more sensitively detect this change over standard approaches. We conducted a cluster randomised control trial (NCT02654912) of presumptive reactive focal drug administration (RFDA-intervention) compared to the standard of care, reactive focal test and treat (RFTAT-control) in Southern Province, Zambia-an area of low seasonal transmission (overall incidence of ~3 per 1,000). We measured routine malaria incidence from health facilities as well as PCR parasite prevalence / antimalarial seroprevalence in an endline cross-sectional population survey. No significant difference was identified from routine incidence data and endline prevalence by polymerase chain reaction (PCR) had insufficient numbers of malaria infections (i.e., 16 infections among 6,276 children) to assess the intervention. Comparing long-term serological markers, we found a 19% (95% CI = 4-32%) reduction in seropositivity for the RFDA intervention using a difference in differences approach incorporating serological positivity and age. We also found a 37% (95% CI = 2-59%) reduction in seropositivity to short-term serological markers in a post-only comparison. These serological analyses provide compelling evidence that RFDA both has an impact on malaria transmission and is an appropriate end-game malaria elimination strategy. Furthermore, serology provides a more sensitive approach to measure changes in transmission that other approaches miss, particularly in very low transmission settings. Trial Registration: Registered at www.clinicaltrials.gov (NCT02654912, 13/1/2016).

5.
Emerg Infect Dis ; 27(8): 2237-2239, 2021 08.
Article in English | MEDLINE | ID: mdl-34287134

ABSTRACT

Rickettsia asembonensis is a flea-related Rickettsia with unknown pathogenicity to humans. We detected R. asembonensis DNA in 2 of 1,153 human blood samples in Zambia. Our findings suggest the possibility of R. asembonensis infection in humans despite its unknown pathogenicity.


Subject(s)
Rickettsia Infections , Rickettsia felis , Rickettsia , Siphonaptera , Animals , Humans , Rickettsia/genetics , Rickettsia Infections/diagnosis , Rickettsia Infections/epidemiology , Zambia/epidemiology
6.
Am J Trop Med Hyg ; 103(2_Suppl): 7-18, 2020 08.
Article in English | MEDLINE | ID: mdl-32618247

ABSTRACT

Over the past decade, Zambia has made substantial progress against malaria and has recently set the ambitious goal of eliminating by 2021. In the context of very high vector control and improved access to malaria diagnosis and treatment in Southern Province, we implemented a community-randomized controlled trial to assess the impact of four rounds of community-wide mass drug administration (MDA) and household-level MDA (focal MDA) with dihydroartemisinin-piperaquine (DHAP) implemented between December 2014 and February 2016. The mass treatment campaigns achieved relatively good household coverage (63-79%), were widely accepted by the community (ranging from 87% to 94%), and achieved very high adherence to the DHAP regimen (81-96%). Significant declines in all malaria study end points were observed, irrespective of the exposure group, with the overall parasite prevalence during the peak transmission season declining by 87.2% from 31.3% at baseline to 4.0% in 2016 at the end of the trial. Children in areas of lower transmission (< 10% prevalence at baseline) that received four MDA rounds had a 72% (95% CI = 12-91%) reduction in malaria parasite prevalence as compared with those with the standard of care without any mass treatment. Mass drug administration consistently had the largest short-term effect size across study end points in areas of lower transmission following the first two MDA rounds. In the context of achieving very high vector control coverage and improved access to diagnosis and treatment for malaria, our results suggest that MDA should be considered for implementation in African settings for rapidly reducing malaria outcomes in lower transmission settings.


Subject(s)
Antimalarials/administration & dosage , Artemisinins/administration & dosage , Malaria, Falciparum/prevention & control , Mass Drug Administration/methods , Quinolines/administration & dosage , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Disease Eradication/methods , Drug Therapy, Combination , Humans , Incidence , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Program Evaluation , Quinolines/therapeutic use , Zambia/epidemiology
7.
Am J Trop Med Hyg ; 103(2_Suppl): 74-81, 2020 08.
Article in English | MEDLINE | ID: mdl-32618250

ABSTRACT

As Zambia continues to reduce its malaria incidence and target elimination in Southern Province, there is a need to identify factors that can reintroduce parasites and sustain malaria transmission. To examine the relative contributions of types of human mobility on malaria prevalence, this analysis quantifies the proportion of the population having recently traveled during both peak and nonpeak transmission seasons over the course of 2 years and assesses the relationship between short-term travel and malaria infection status. Among all residents targeted by mass drug administration in the Lake Kariba region of Southern Province, 602,620 rapid diagnostic tests and recent travel histories were collected during four campaign rounds occurring between December 2014 and February 2016. Rates of short-term travel in the previous 2 weeks fluctuated seasonally from 0.3% to 1.2%. Travel was significantly associated with prevalent malaria infection both seasonally and overall (adjusted odds ratio [AOR]: 2.55; 95% CI: 2.28-2.85). The strength of association between travel and malaria infection varied by travelers' origin and destination, with those recently traveling to high-prevalence areas from low-prevalence areas experiencing the highest odds of malaria infection (AOR: 7.38). Long-lasting insecticidal net usage while traveling was associated with a relative reduction in infections (AOR: 0.74) compared with travelers not using a net. Although travel was directly associated with only a small fraction of infections, importation of malaria via human movement may play an increasingly important role in this elimination setting as transmission rates continue to decline.


Subject(s)
Malaria, Falciparum/transmission , Plasmodium falciparum , Travel , Adolescent , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Artemisinins/administration & dosage , Artemisinins/therapeutic use , Child , Child, Preschool , Drug Therapy, Combination , Family Characteristics , Female , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Male , Mass Drug Administration/methods , Prevalence , Quinolines/administration & dosage , Quinolines/therapeutic use , Risk Factors , Zambia/epidemiology
8.
Am J Trop Med Hyg ; 103(2_Suppl): 82-89, 2020 08.
Article in English | MEDLINE | ID: mdl-32618252

ABSTRACT

Malaria burden in Zambia has significantly declined over the last decade because of improved coverage of several key malaria interventions (e.g., vector control, case management, bed net distributions, and enhanced surveillance/responses). Campaign-based mass drug administration (MDA) and focal MDA (fMDA) were assessed in a trial in Southern Province, Zambia, to identify its utility in elimination efforts. As part of the study, a longitudinal cohort was visited and tested (by PCR targeting the 18s rRNA and a Plasmodium falciparum-specific rapid diagnostic test [RDT] from SD Bioline) every month for the trial duration (18 months). Overall, there was high concordance (> 97%) between the PCR and RDT results, using the PCR as the gold standard. The RDTs had high specificity and negative predictive values (98.5% and 98.6%, respectively) but low sensitivity (53.0%) and a low positive predictive value (53.8%). There was evidence for persistent antigenemia affecting the low specificity of the RDT, while false-negative RDTs were associated with a lower parasite density than true positive RDTs. Plasmodium falciparum was the dominant species identified, with 98.3% of all positive samples containing P. falciparum. Of these, 97.5% were mono-infections and 0.8% coinfections with one other species. Plasmodium malariae was found in 1.4% of all positive samples (50% mono-infections and 50% coinfections with P. falciparum), whereas Plasmodium ovale was found in 1.1% of all positive samples (90% mono-infections and 10% coinfections with P. falciparum). Although MDA/fMDA appeared to reduce P. malariae prevalence, P. ovale prevalence appeared unchanged.


Subject(s)
Antimalarials/administration & dosage , Malaria, Falciparum/epidemiology , Malaria/epidemiology , Mass Drug Administration/methods , Plasmodium falciparum , Real-Time Polymerase Chain Reaction/methods , Antimalarials/therapeutic use , Artemisinins/administration & dosage , Artemisinins/therapeutic use , Drug Therapy, Combination/methods , Humans , Longitudinal Studies , Malaria/diagnosis , Malaria/drug therapy , Malaria/prevention & control , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Prevalence , Quinolines/administration & dosage , Quinolines/therapeutic use , Zambia/epidemiology
9.
Am J Trop Med Hyg ; 103(2_Suppl): 66-73, 2020 08.
Article in English | MEDLINE | ID: mdl-32618255

ABSTRACT

A mass drug administration trial was carried out in Southern Province, Zambia, between 2014 and 2016, in conjunction with a standard of care package that included improved surveillance, increased access to malaria case management, and sustained high levels of vector control coverage. This was preceded by mass test and treatment in the same area from 2011 to 2013. Concordant decreases in malaria prevalence in Southern Province and deaths attributed to malaria in Zambia over this time suggest that these strategies successfully reduced the malaria burden. Genetic epidemiological studies were used to assess the consequences of these interventions on parasite population structure. Analysis of parasite material derived from 1,620 rapid diagnostic test (RDT)-positive individuals obtained from studies to evaluate trial outcomes revealed a reduction in the average complexity of infection and consequential increase in the proportion of infections that harbored a single parasite genome (monogenomic infections). Highly related parasites, consistent with inbreeding, were detected after interventions were deployed. Geographical analysis indicated that the highly related infections were both clustered focally and dispersed across the study area. These findings provide genetic evidence for a reduced parasite population, with indications of inbreeding following the application of comprehensive interventions, including drug-based campaigns, that reduced the malaria burden in Southern Province. Genetic data additionally revealed the relationship between individual infections in the context of these population-level patterns, which has the potential to provide useful data for stratification and targeting of interventions to reduce the malaria burden.


Subject(s)
Antimalarials/administration & dosage , Malaria, Falciparum/prevention & control , Mass Drug Administration , Plasmodium falciparum/drug effects , Antimalarials/therapeutic use , Child , Disease Eradication/methods , Genetic Variation , Genotyping Techniques , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Mass Drug Administration/methods , Plasmodium falciparum/genetics , Program Evaluation , Zambia/epidemiology
10.
Am J Trop Med Hyg ; 103(2_Suppl): 37-45, 2020 08.
Article in English | MEDLINE | ID: mdl-32618267

ABSTRACT

Mass drug administration (MDA) with artemisinin combination therapy is a potentially useful tool for malaria elimination programs, but its success depends partly on drug effectiveness and treatment coverage in the targeted population. As part of a cluster-randomized controlled trial in Southern Province, Zambia evaluating the impact of MDA and household focal MDA (fMDA) with dihydroartemisinin-piperaquine (DHAp), sub-studies were conducted investigating population drug adherence rates and effectiveness of DHAp as administered in clearing Plasmodium falciparum infections following household mass administration. Adherence information was reported for 181,534 of 336,821 DHAp (53.9%) treatments administered during four rounds of MDA/fMDA, of which 153,197 (84.4%) reported completing the full course of DHAp. The proportion of participants fully adhering to the treatment regimen differed by MDA modality (MDA versus fMDA), RDT status, and whether the first dose was observed by those administering treatments. Among a subset of participants receiving DHAp and selected for longitudinal follow-up, 58 were positive for asexual-stage P. falciparum infection by microscopy at baseline. None of the 45 participants followed up at days 3 and/or 7 were slide positive for asexual-stage parasitemia. For those with longer term follow-up, one participant was positive 47 days after treatment, and two additional participants were positive after 69 days, although these two were determined to be new infections by genotyping. High completion of a 3-day course of DHAp and parasite clearance in the context of household MDA are promising as Zambia's National Malaria Programme continues to weigh appropriate interventions for malaria elimination.


Subject(s)
Antimalarials/administration & dosage , Artemisinins/administration & dosage , Malaria, Falciparum/prevention & control , Mass Drug Administration , Medication Adherence , Patient Acceptance of Health Care , Plasmodium falciparum , Quinolines/administration & dosage , Adolescent , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Child , Child, Preschool , Disease Eradication/methods , Disease Eradication/statistics & numerical data , Drug Therapy, Combination , Family Characteristics , Female , Humans , Interviews as Topic , Malaria, Falciparum/epidemiology , Male , Mass Drug Administration/methods , Mass Drug Administration/psychology , Mass Drug Administration/statistics & numerical data , Medication Adherence/psychology , Medication Adherence/statistics & numerical data , Patient Acceptance of Health Care/psychology , Patient Acceptance of Health Care/statistics & numerical data , Plasmodium falciparum/drug effects , Quinolines/therapeutic use , Zambia/epidemiology
11.
Malar J ; 17(1): 438, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30486852

ABSTRACT

BACKGROUND: Accurate diagnosis of malaria and reduced reliance on presumptive treatment are crucial components of quality case management. From 2008 to 2012, the Improving Malaria Diagnostics project, in collaboration with the Zambia National Malaria Control Centre, implemented an external quality assurance scheme partially comprised of outreach training and supportive supervision (OTSS) in an effort to improve malaria case management across a spectrum of health facilities performing laboratory-based malaria diagnostics. OTSS assessments were conducted by project-trained laboratory and clinical supervisors on a regular basis and measured changes in health facility staff performance over time. Standardized supervision tools were used for data collection and guided OTSS teams to assess health facility infrastructure, record keeping practices, stores of supplies and consumables, good laboratory practices, and staff adherence to guidelines for the case management and diagnosis of suspected malaria cases via direct observations or record reviews. The structure of OTSS also allowed supervisors to provide ongoing support to clinicians and laboratory staff through regular mentoring and on-the-job training. RESULTS: This analysis included 88 laboratories and 64 clinics each with four repeated supervisory assessments. Over the course of the project there were significant declines in the number of laboratories experiencing stock-outs of microscopy reagents/consumables (p < 0.001) and significant increases in the number of laboratories instituting the use of microscopy positive controls (p < 0.01), conducting parasite counting (p < 0.05), and converting from a semi-quantitative to a quantitative parasite counting methodology (p < 0.001). Performance in malaria diagnostic and clinical practices [i.e. RDT use (mean(diff) = 14.3%, p < 0.001), blood slide preparation (mean(diff) = 14.7%, p < 0.001), blood slide staining and reading (mean(diff) = 14.0%, p < 0.001), fever case management (mean(diff) = 7.3%, p < 0.01)] and prescriber adherence to negative diagnostic test results (mean(diff) = 7.2%, p < 0.05) showed modest, but significant gains from assessment 1 to assessment 4. CONCLUSION: The external quality assurance scheme provided periodic representations of clinical and laboratory staff performance. OTSS-enrolled health facilities demonstrated improvements to malaria diagnostic skills, adoption of laboratory best practices, strengthened fever case management practices, and improved prescriber adherence to negative malaria test results.


Subject(s)
Capacity Building , Case Management , Malaria/diagnosis , Malaria/drug therapy , Preceptorship/methods , Preceptorship/organization & administration , Quality Assurance, Health Care/organization & administration , Health Education , Humans , Zambia
12.
Trials ; 18(1): 511, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29096671

ABSTRACT

BACKGROUND: Zambia is pushing for, and has made great strides towards, the elimination of malaria transmission in Southern Province. Reactive focal test and treat (RFTAT) using rapid diagnostic tests and artemether-lumefantrine (AL) has been key in making this progress. Reactive focal drug administration (RFDA) using dihydroartemisinin-piperaquine (DHAP), may be superior in accelerating clearance of the parasite reservoir in humans due to the provision of enhanced chemoprophylactic protection of at-risk populations against new infections. The primary aim of this study is to quantify the relative effectiveness of RFDA with DHAP against RFTAT with AL (standard of care) for reducing Plasmodium falciparum prevalence and incidence. METHODS/DESIGN: The study will be conducted in four districts in Southern Province, Zambia; an area of low malaria transmission and high coverage of vector control. A community randomized controlled trial of 16 health facility catchment areas will be used to evaluate the impact of sustained year-round routine RFDA for 2 years, relative to a control of year-round routine RFTAT. Reactive case detection will be triggered by a confirmed malaria case, e.g., by microscopy or rapid diagnostic test at any government health facility. Reactive responses will be performed by community health workers (CHW) within 7 days of the index case confirmation date. Responses will be performed out to a radius of 140 m from the index case household. A subset of responses will be followed longitudinally for 90 days to examine reinfection rates. Primary outcomes include a post-intervention survey of malaria seropositivity (n = 4800 children aged 1 month to under 5 years old) and a difference-in-differences analysis of malaria parasite incidence, as measured through routine passive case detection at health facilities enrolled in the study. The study is powered to detect approximately a 65% relative reduction in these outcomes between the intervention versus the control. DISCUSSION: Strengths of this trial include a robust study design and an endline cross-sectional parasite survey as well as a longitudinal sample. Primary limitations include statistical power to detect only a 65% reduction in primary outcomes, and the potential for contamination to dilute the effects of the intervention. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT02654912 . Registered on 12 November 2015.


Subject(s)
Antimalarials/administration & dosage , Artemisinins/administration & dosage , Ethanolamines/administration & dosage , Fluorenes/administration & dosage , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Quinolines/administration & dosage , Adolescent , Adult , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination , Artemisinins/adverse effects , Child , Child, Preschool , Clinical Protocols , Community Health Services , Drug Administration Schedule , Drug Combinations , Ethanolamines/adverse effects , Female , Fluorenes/adverse effects , Humans , Incidence , Infant , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/pathogenicity , Prevalence , Quinolines/adverse effects , Research Design , Risk Factors , Time Factors , Treatment Outcome , Young Adult , Zambia/epidemiology
13.
Emerg Infect Dis ; 23(13)2017 12.
Article in English | MEDLINE | ID: mdl-29155671

ABSTRACT

Antimalarial drug resistance is an evolving global health security threat to malaria control. Early detection of Plasmodium falciparum resistance through therapeutic efficacy studies and associated genetic analyses may facilitate timely implementation of intervention strategies. The US President's Malaria Initiative-supported Antimalarial Resistance Monitoring in Africa Network has assisted numerous laboratories in partner countries in acquiring the knowledge and capability to independently monitor for molecular markers of antimalarial drug resistance.


Subject(s)
Drug Resistance , Government Programs , Malaria/epidemiology , Malaria/prevention & control , Public Health Surveillance , Africa/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Global Health , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , United States
14.
J Infect Dis ; 214(12): 1831-1839, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27923947

ABSTRACT

BACKGROUND: Mass drug administration (MDA) using dihydroartemisinin plus piperaquine (DHAp) represents a potential strategy to clear Plasmodium falciparum infections and reduce the human parasite reservoir. METHODS: A cluster-randomized controlled trial in Southern Province, Zambia, was used to assess the short-term impact of 2 rounds of community-wide MDA and household-level (focal) MDA with DHAp compared with no mass treatment. Study end points included parasite prevalence in children, infection incidence, and confirmed malaria case incidence. RESULTS: All end points significantly decreased after intervention, irrespective of treatment group. Parasite prevalence from 7.71% at baseline to 0.54% after MDA in lower-transmission areas, resulting in an 87% reduction compared with control (adjusted odds ratio, 0.13; 95% confidence interval, .02-.92; P = .04). No difference between treatment groups was observed in areas of high transmission. The 5-month cumulative infection incidence was 70% lower (crude incidence rate ratio, 0.30; 95% confidence interval, .06-1.49; P = .14) and 58% lower (0.42; .18-.98; P = .046) after MDA compared with control in lower- and higher-transmission areas, respectively. No significant impact of focal MDA was observed for any end point. CONCLUSIONS: Two rounds of MDA with DHAp rapidly reduced infection prevalence, infection incidence, and confirmed case incidence rates, especially in low-transmission areas. CLINICAL TRIALS REGISTRATION: NCT02329301.


Subject(s)
Antimalarials/administration & dosage , Artemisinins/administration & dosage , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Quinolines/administration & dosage , Chemoprevention/methods , Child, Preschool , Drug Therapy/methods , Family Characteristics , Female , Humans , Incidence , Infant , Malaria, Falciparum/epidemiology , Male , Prevalence , Treatment Outcome , Zambia/epidemiology
15.
Parasit Vectors ; 9(1): 431, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27496161

ABSTRACT

BACKGROUND: Four malaria indicator surveys (MIS) were conducted in Zambia between 2006 and 2012 to evaluate malaria control scale-up. Nationally, coverage of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) increased over this period, while parasite prevalence in children 1-59 months decreased dramatically between 2006 and 2008, but then increased from 2008 to 2010. We assessed the relative effects of vector control coverage and climate variability on malaria parasite prevalence over this period. METHODS: Nationally-representative MISs were conducted in April-June of 2006, 2008, 2010 and 2012 to collect household-level information on malaria control interventions such as IRS, ITN ownership and use, and child parasite prevalence by microscopic examination of blood smears. We fitted Bayesian geostatistical models to assess the association between IRS and ITN coverage and climate variability and malaria parasite prevalence. We created predictions of the spatial distribution of malaria prevalence at each time point and compared results of varying IRS, ITN, and climate inputs to assess their relative contributions to changes in prevalence. RESULTS: Nationally, the proportion of households owning an ITN increased from 37.8 % in 2006 to 64.3 % in 2010 and 68.1 % in 2012, with substantial heterogeneity sub-nationally. The population-adjusted predicted child malaria parasite prevalence decreased from 19.6 % in 2006 to 10.4 % in 2008, but rose to 15.3 % in 2010 and 13.5 % in 2012. We estimated that the majority of this prevalence increase at the national level between 2008 and 2010 was due to climate effects on transmission, although there was substantial heterogeneity at the provincial level in the relative contribution of changing climate and ITN availability. We predict that if climate factors preceding the 2010 survey were the same as in 2008, the population-adjusted prevalence would have fallen to 9.9 % nationally. CONCLUSIONS: These results suggest that a combination of climate factors and reduced intervention coverage in parts of the country contributed to both the reduction and rebound in malaria parasite prevalence. Unusual rainfall patterns, perhaps related to moderate El Niño conditions, may have contributed to this variation. Zambia has demonstrated considerable success in scaling up vector control. This analysis highlights the importance of accounting for climate variability when using cross-sectional data for evaluation of malaria control efforts.


Subject(s)
Culicidae/physiology , Insect Vectors/physiology , Malaria/epidemiology , Malaria/transmission , Animals , Child, Preschool , Climate Change , Culicidae/drug effects , Culicidae/parasitology , Family Characteristics , Female , Humans , Infant , Insect Vectors/drug effects , Insect Vectors/parasitology , Insecticide-Treated Bednets/statistics & numerical data , Insecticides/pharmacology , Malaria/parasitology , Malaria/prevention & control , Male , Mosquito Control , Prevalence , Zambia/epidemiology
16.
Malar J ; 15: 100, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26893012

ABSTRACT

BACKGROUND: Long-lasting, insecticidal nets (LLINs) and indoor residual spraying (IRS) are the most widely accepted and applied malaria vector control methods. However, evidence that incremental impact is achieved when they are combined remains limited and inconsistent. METHODS: Fourteen population clusters of approximately 1000 residents each in Zambia's Luangwa and Nyimba districts, which had high pre-existing usage rates (81.7 %) of pyrethroid-impregnated LLINs were quasi-randomly assigned to receive IRS with either of two pyrethroids, namely deltamethrin [Wetable granules (WG)] and lambdacyhalothrin [capsule suspension (CS)], with an emulsifiable concentrate (EC) or CS formulation of the organophosphate pirimiphos methyl (PM), or with no supplementary vector control measure. Diagnostic positivity of patients tested for malaria by community health workers in these clusters was surveyed longitudinally over pre- and post-treatment periods spanning 29 months, over which the treatments were allocated and re-allocated in advance of three sequential rainy seasons. RESULTS: Supplementation of LLINs with PM CS offered the greatest initial level of protection against malaria in the first 3 months of application (incremental protective efficacy (IPE) [95 % confidence interval (CI)] = 0.63 [CI 0.57, 0.69], P < 0.001), followed by lambdacyhalothrin (IPE [95 % CI] = 0.31 [0.10, 0.47], P = 0.006) and PM EC (IPE, 0.23 [CI 0.15, 0.31], P < 0.001) and then by deltamethrin (IPE [95 % CI] = 0.19 [-0.01, 0.35], P = 0.064). Neither pyrethroid formulation provided protection beyond 3 months after spraying, but the protection provided by both PM formulations persisted undiminished for longer periods: 6 months for CS and 12 months for EC. The CS formulation of PM provided greater protection than the combined pyrethroid IRS formulations throughout its effective life IPE [95 % CI] = 0.79 [0.75, 0.83] over 6 months. The EC formulation of PM provided incremental protection for the first 3 months (IPE [95 % CI] = 0.23 [0.15, 0.31]) that was approximately equivalent to the two pyrethroid formulations (lambdacyhalothrin, IPE [95 % CI] = 0.31 [0.10, 0.47] and deltamethrin, IPE [95 % CI] = 0.19 [-0.01, 0.35]) but the additional protection provided by the former, apparently lasted an entire year. CONCLUSION: Where universal coverage targets for LLIN utilization has been achieved, supplementing LLINs with IRS using pyrethroids may reduce malaria transmission below levels achieved by LLIN use alone, even in settings where pyrethroid resistance occurs in the vector population. However, far greater reduction of transmission can be achieved under such conditions by supplementing LLINs with IRS using non-pyrethroid insecticide classes, such as organophosphates, so this is a viable approach to mitigating and managing pyrethroid resistance.


Subject(s)
Insecticide-Treated Bednets , Insecticides/therapeutic use , Malaria/prevention & control , Malaria/therapy , Organophosphates/therapeutic use , Organothiophosphorus Compounds/therapeutic use , Pyrethrins/therapeutic use , Animals , Humans , Malaria/transmission , Male
17.
Trials ; 16: 347, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26268804

ABSTRACT

BACKGROUND: Mass drug administration (MDA) and focal MDA (fMDA) using dihydroartemisinin plus piperaquine (DHAp), represent two strategies to maximize the use of existing information to achieve greater clearance of human infection and reduce the parasite reservoir, and provide longer chemoprophylactic protection against new infections. The primary aim of this study is to quantify the relative effectiveness of MDA and fMDA with DHAp against no mass treatment (standard of care) for reducing Plasmodium falciparum prevalence and incidence. METHODS/DESIGN: The study will be conducted along Lake Kariba in Southern Province, Zambia; an area of low to moderate malaria transmission and high coverage of vector control. A community randomized controlled trial (CRCT) of 60 health facility catchment areas (HFCAs) will be used to evaluate the impact of two rounds of MDA and fMDA interventions, relative to a control of no mass treatment, stratified by high and low transmission. Community residents in MDA HFCAs will be treated with DHAp at the end of the dry season (round one: November to December 2014) and the beginning of the rainy season (round two: February to March 2015). Community residents in fMDA HFCAs will be tested during the same two rounds for malaria parasites with a rapid diagnostic test; all positive individuals and all individuals living in their household will be treated with DHAp. Primary outcomes include malaria parasite prevalence (n = 5,640 children aged one month to under five-years-old), as measured by pre- and post-surveys, and malaria parasite infection incidence (n = 2,250 person-years among individuals aged three months and older), as measured by a monthly longitudinal cohort. The study is powered to detect approximately a 50 % relative reduction in these outcomes between each intervention group versus the control. DISCUSSION: Strengths of this trial include: a robust study design (CRCT); cross-sectional parasite surveys as well as a longitudinal cohort; and stratification of high and low transmission areas. Primary limitations include: statistical power to detect only a 50 % reduction in primary outcomes within high and low transmission strata; potential for contamination; and potential for misclassification of exposure. TRIAL REGISTRATION: Identifier: Clinicaltrials.gov: NCT02329301 . Registration date: 30 December 2014.


Subject(s)
Antimalarials/administration & dosage , Artemisinins/administration & dosage , Community Health Services , Malaria/prevention & control , Quinolines/administration & dosage , Antimalarials/adverse effects , Artemisinins/adverse effects , Catchment Area, Health , Child, Preschool , Cross-Sectional Studies , Drug Combinations , Health Facilities , Humans , Incidence , Infant , Longitudinal Studies , Malaria/diagnosis , Malaria/epidemiology , Malaria/parasitology , Malaria/transmission , Mass Screening , Prevalence , Program Evaluation , Quinolines/adverse effects , Research Design , Seasons , Time Factors , Treatment Outcome , Zambia/epidemiology
18.
BMC Infect Dis ; 15: 204, 2015 May 02.
Article in English | MEDLINE | ID: mdl-25930101

ABSTRACT

BACKGROUND: Although malaria is preventable and treatable, it still claims 660,000 lives every year globally with children under five years of age having the highest burden. In Zambia, malaria rapid diagnostic tests (RDTs) that only detect Plasmodium falciparum are the main confirmatory means for malaria diagnosis in most health facilities without microscopy services. As a consequence of this P. falciparum species diagnostic approach, non-falciparum malaria is not only under-diagnosed but entirely missed, thereby making the exact disease burden unknown. We thus investigated the prevalence of various Plasmodium spp. and associated burden of infection in selected communities in Zambia. METHODS: Data from two malaria hyper-endemic provinces (Eastern and Luapula) of the 2012 National Malaria Indicator Survey (MIS), conducted between April and May 2012, were used. The MIS is a nationally representative, two-stage cluster survey conducted to coincide with the end of the malaria transmission season. Social, behavioural and background information were collected from households as part of the survey. Thick blood smears, RDTs and dried blood spots (DBS) were collected from children below six years of age. Slides were stained using Giemsa and examined by microscopy while polymerase chain reaction (PCR) was used to analyse the DBS for malaria Plasmodium spp. Multivariate logistic regression was employed to examine the association between background factors and malaria. RESULTS: Overall, 873 children younger than six years of age were surveyed. The overall prevalence of Plasmodium spp. by PCR was 54.3% (95% CI 51-57.6%). Of the total Plasmodium isolates, 88% were P. falciparum, 10.6% were mixed infections and 1.4% were non-falciparum mono infections. Among the mixed infections, the majority were a combination of P. falciparum and P. malariae (6.5% of all mixed infections). Children two years and older (2-5 years) had three-fold higher risk of mixed malaria infections (aOR 2.8 CI 1.31-5.69) than children younger than two years of age. CONCLUSION: The high prevalence of mixed Plasmodium spp. infections in this population stresses review of the current malaria RDT diagnostic approaches. The observed less incidence of mixed infections in children under two years of age compared to their older two-to-five-year-old counterparts is probably due to the protective maternal passive immunity, among other factors, in that age group.


Subject(s)
Malaria/epidemiology , Plasmodium/isolation & purification , Child , Child Health Services , Child, Preschool , Diagnostic Tests, Routine , Endemic Diseases , Female , Humans , Infant , Infant, Newborn , Malaria/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Plasmodium/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Prevalence , Seasons , Surveys and Questionnaires , Zambia/epidemiology
19.
Popul Health Metr ; 12(1): 30, 2014.
Article in English | MEDLINE | ID: mdl-25435815

ABSTRACT

BACKGROUND: Due to challenges in laboratory confirmation, reporting completeness, timeliness, and health access, routine incidence data from health management information systems (HMIS) have rarely been used for the rigorous evaluation of malaria control program scale-up in Africa. METHODS: We used data from the Zambia HMIS for 2009-2011, a period of rapid diagnostic and reporting scale-up, to evaluate the association between insecticide-treated net (ITN) program intensity and district-level monthly confirmed outpatient malaria incidence using a dose-response national platform approach with district-time units as the unit of analysis. A Bayesian geostatistical model was employed to estimate longitudinal district-level ITN coverage from household survey and programmatic data, and a conditional autoregressive model (CAR) was used to impute missing HMIS data. The association between confirmed malaria case incidence and ITN program intensity was modeled while controlling for known confounding factors, including climate variability, reporting, testing, treatment-seeking, and access to health care, and additionally accounting for spatial and temporal autocorrelation. RESULTS: An increase in district level ITN coverage of one ITN per household was associated with an estimated 27% reduction in confirmed case incidence overall (incidence rate ratio (IRR): 0 · 73, 95% Bayesian Credible Interval (BCI): 0 · 65-0 · 81), and a 41% reduction in areas of lower malaria burden. CONCLUSIONS: When improved through comprehensive parasitologically confirmed case reporting, HMIS data can become a valuable tool for evaluating malaria program scale-up. Using this approach we provide further evidence that increased ITN coverage is associated with decreased malaria morbidity and use of health services for malaria illness in Zambia. These methods and results are broadly relevant for malaria program evaluations currently ongoing in sub-Saharan Africa, especially as routine confirmed case data improve.

20.
Malar J ; 13: 430, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25403945

ABSTRACT

BACKGROUND: Anti-malarial drug resistance continues to be a leading threat to ongoing malaria control efforts and calls for continued monitoring of the efficacy of these drugs in order to inform national anti-malarial drug policy decision-making. This study assessed the therapeutic efficacy and safety of artemether-lumefantrine (AL)(Coartem®) for the treatment of uncomplicated Plasmodium falciparum malaria in two sentinel high malaria transmission districts in the Eastern Province of Zambia in persons aged six months and above, excluding women aged 12 to 18 years. METHODS: This was an observational cohort of 176 symptomatic patients diagnosed with uncomplicated Plasmodium falciparum mono-infection. A World Health Organization (WHO)-standardized 28-day assessment protocol was used to assess clinical and parasitological responses to directly observed AL treatment of uncomplicated malaria. DNA polymerase chain reaction (PCR) analysis for molecular markers of AL resistance was conducted on positive blood samples and differentiated recrudescence from re-infections of the malaria parasites. RESULTS: All patients (CI 97.6-100) had adequate clinical and parasitological responses to treatment with AL. At the time of enrolment, mean slide positivity among study participants was 71.8% and 55.2% in Katete and Chipata, respectively. From a mean parasite density of 55,087, 98% of the study participants presented with zero parasitaemia by day 3 of the study. Fever clearance occurred within 24 hours of treatment with AL. However mean parasite density declines were most dramatic in participants in the older age. No adverse reactions to AL treatment were observed during the study. CONCLUSION: AL remains a safe and efficacious drug for the treatment of uncomplicated Plasmodium falciparum malaria in Zambia, endemic for malaria, with some provinces experiencing high transmission intensity. However, the delayed parasite clearance in younger patients calls for further sentinel and periodical monitoring of AL efficacy in different areas of the country.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Ethanolamines/therapeutic use , Fluorenes/therapeutic use , Malaria, Falciparum/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination , Artemisinins/adverse effects , Child , Child, Preschool , Cohort Studies , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Drug Combinations , Ethanolamines/adverse effects , Female , Fluorenes/adverse effects , Humans , Infant , Infant, Newborn , Malaria, Falciparum/transmission , Male , Middle Aged , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Prospective Studies , Treatment Outcome , Young Adult , Zambia
SELECTION OF CITATIONS
SEARCH DETAIL
...