Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 345: 199389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714217

ABSTRACT

Saffron (Crocus sativus L.), a historically significant crop valued for its nutraceutical properties, has been poorly explored from a phytosanitary perspective. This study conducted a thorough examination of viruses affecting saffron samples from Spanish cultivars, using high-throughput sequencing alongside a systematic survey of transcriptomic datasets from Crocus sativus at the Sequence Read Archive. Our analysis unveiled a broad diversity and abundance, identifying 17 viruses across the 52 analyzed libraries, some of which were highly prevalent. This includes known saffron-infecting viruses and previously unreported ones. In addition, we discovered 7 novel viruses from the Alphaflexiviridae, Betaflexiviridae, Potyviridae, Solemoviridae, and Geminiviridae families, with some present in libraries from various locations. These findings indicate that the saffron-associated virome is more complex than previously reported, emphasizing the potential of phytosanitary analysis to enhance saffron productivity.


Subject(s)
Crocus , Plant Diseases , Crocus/genetics , Plant Diseases/virology , Plant Viruses/genetics , Plant Viruses/classification , Plant Viruses/isolation & purification , High-Throughput Nucleotide Sequencing , Virome/genetics , Gene Expression Profiling , Transcriptome , Phylogeny , Genome, Viral , Potyviridae/genetics , Potyviridae/isolation & purification , Flexiviridae/genetics , Flexiviridae/classification , Flexiviridae/isolation & purification
2.
Food Funct ; 15(11): 5921-5928, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38738496

ABSTRACT

Crocins are bioactive glucosylated apocarotenoids that confer a yellow pigmentation. In addition to their coloring ability, crocins offer potential health benefits because of their antioxidant and anti-inflammatory properties. These compounds are present in the flowers and fruits of a few plant species, including saffron, gardenia, Buddleja and Verbascum species. Saffron extracts have been used for the formulation of functional foods. However, there is no evidence of the use of the other plants producing crocins in the food industry. This study evaluated the effect of the addition of ground dry flowers of two Verbascum species, with antioxidant activity, as well as dry fruit powder, from a recently engineered tomato plant producing fruits that accumulate high levels of crocins, as functional ingredients during the processing of rice, wheat cous-cous and maize noodles, providing a yellow pigmentation. Correlation analyses revealed that the increased antioxidant activity in the three food matrices was due to the presence of crocins, which showed no toxicity. Furthermore, in vitro digestion showed that crocins were more bioaccessible from rice than from cous-cous or maize noodles, inferring the importance of the food matrix in bio accessibility. The obtained results showed the commercial potential of Verbascum's flowers, as a source of crocins, natural pigments with antioxidant activities.


Subject(s)
Antioxidants , Carotenoids , Flowers , Plant Extracts , Verbascum , Flowers/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Carotenoids/chemistry , Carotenoids/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Verbascum/chemistry , Pigments, Biological/chemistry , Pigments, Biological/pharmacology , Humans , Fruit/chemistry
3.
Plant J ; 118(1): 58-72, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38100533

ABSTRACT

Crocins are glucosylated apocarotenoids present in flowers and fruits of a few plant species, including saffron, gardenia, and Buddleja. The biosynthesis of crocins in these plants has been unraveled, and the enzymes engineered for the production of crocins in heterologous systems. Mullein (Verbascum sp.) has been identified as a new source of crocins and picrocrocin. In this work, we have identified eight enzymes involved in the cleavage of carotenoids in two Verbascum species, V. giganteum and V. sinuatum. Four of them were homologous to the previously identified BdCCD4.1 and BdCCD4.3 from Buddleja, involved in the biosynthesis of crocins. These enzymes were analyzed for apocarotenogenic activity in bacteria and Nicotiana benthamiana plants using a virus-driven system. Metabolic analyses of bacterial extracts and N. benthamiana leaves showed the efficient activity of these enzymes to produce crocins using ß-carotene and zeaxanthin as substrates. Accumulations of 0.17% of crocins in N. benthamiana dry leaves were reached in only 2 weeks using a recombinant virus expressing VgCCD4.1, similar to the amounts previously produced using the canonical saffron CsCCD2L. The identification of these enzymes, which display a particularly broad substrate spectrum, opens new avenues for apocarotenoid biotechnological production.


Subject(s)
Crocus , Cyclohexenes , Glucosides , Terpenes , Verbascum , Verbascum/metabolism , Crocus/genetics , Crocus/chemistry , Vitamin A/metabolism , Carotenoids/metabolism
4.
Plant Sci ; 329: 111609, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36737005

ABSTRACT

Paulownia tomentosa is an economically important fast-growing tree, and its flowers and fruits are a rich source of biologically active secondary metabolites. In addition, the flowers of P. tomentosa are distinguished by a strong aroma and are also excellent nectariferous plants. The flowers are pale lilac and characterized by the presence of yellow nectar guides, whose color changes during the development of the flower, representing reliable signals to pollinators while enhancing reproductive success. The chemical analyses of the nectar guides revealed the presence of carotenoids as the pigments responsible for the observed coloration, with ß-carotene levels determining the color changes observed after anthesis, with a reduction at anthesis and further increase and accumulation in post anthesis. To understand how ß-carotene accumulation was controlled in the nectar guides, the expression of genes related to carotenoid biosynthesis and metabolism was analyzed. Carotenogenic gene expression was not associated with the observed changes in ß-carotene during flower development. However, the expression of a gene encoding a carotenoid cleavage dioxygenase, CCD4-4, was co-related with the levels of ß-carotene in the nectar guides. In addition, CCD4-4 cleavage ß-carotene at C9-C10 and C9'-C10' positions, resulting in the generation of ß-ionone, which was detected in flowers at anthesis. The obtained results indicated a developmental stage specific regulation of apocarotenoid formation through ß-carotene cleavage, resulting in color changes and volatile production as key traits for plant-pollinator interactions. DATA AVAILABILITY: Data will be made available on request.


Subject(s)
Dioxygenases , beta Carotene , beta Carotene/metabolism , Dioxygenases/genetics , Plant Nectar , Odorants , Carotenoids/metabolism , Flowers/genetics
5.
Front Nutr ; 9: 1045979, 2022.
Article in English | MEDLINE | ID: mdl-36532525

ABSTRACT

Carotenoids are C40 isoprenoids with well-established roles in photosynthesis, pollination, photoprotection, and hormone biosynthesis. The enzymatic or ROS-induced cleavage of carotenoids generates a group of compounds named apocarotenoids, with an increasing interest by virtue of their metabolic, physiological, and ecological activities. Both classes are used industrially in a variety of fields as colorants, supplements, and bio-actives. Crocins and picrocrocin, two saffron apocarotenoids, are examples of high-value pigments utilized in the food, feed, and pharmaceutical industries. In this study, a unique construct was achieved, namely O6, which contains CsCCD2L, UGT74AD1, and UGT709G1 genes responsible for the biosynthesis of saffron apocarotenoids driven by a patatin promoter for the generation of potato tubers producing crocins and picrocrocin. Different tuber potatoes accumulated crocins and picrocrocin ranging from 19.41-360 to 105-800 µg/g DW, respectively, with crocetin, crocin 1 [(crocetin-(ß-D-glucosyl)-ester)] and crocin 2 [(crocetin)-(ß-D-glucosyl)-(ß-D-glucosyl)-ester)] being the main compounds detected. The pattern of carotenoids and apocarotenoids were distinct between wild type and transgenic tubers and were related to changes in the expression of the pathway genes, especially from PSY2, CCD1, and CCD4. In addition, the engineered tubers showed higher antioxidant capacity, up to almost 4-fold more than the wild type, which is a promising sign for the potential health advantages of these lines. In order to better investigate these aspects, different cooking methods were applied, and each process displayed a significant impact on the retention of apocarotenoids. More in detail, the in vitro bioaccessibility of these metabolites was found to be higher in boiled potatoes (97.23%) compared to raw, baked, and fried ones (80.97, 78.96, and 76.18%, respectively). Overall, this work shows that potatoes can be engineered to accumulate saffron apocarotenoids that, when consumed, can potentially offer better health benefits. Moreover, the high bioaccessibility of these compounds revealed that potato is an excellent way to deliver crocins and picrocrocin, while also helping to improve its nutritional value.

6.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36142456

ABSTRACT

Chromoplasts and chloroplasts contain carotenoid pigments as all-trans- and cis-isomers, which function as accessory light-harvesting pigments, antioxidant and photoprotective agents, and precursors of signaling molecules and plant hormones. The carotenoid pathway involves the participation of different carotenoid isomerases. Among them, D27 is a ß-carotene isomerase showing high specificity for the C9-C10 double bond catalyzing the interconversion of all-trans- into 9-cis-ß-carotene, the precursor of strigolactones. We have identified one D27 (CsD27-1) and two D27-like (CsD27-2 and CsD27-3) genes in saffron, with CsD27-1 and CsD27-3, clearly differing in their expression patterns; specifically, CsD27-1 was mainly expressed in the undeveloped stigma and roots, where it is induced by Rhizobium colonization. On the contrary, CsD27-2 and CsD27-3 were mainly expressed in leaves, with a preferential expression of CsD27-3 in this tissue. In vivo assays show that CsD27-1 catalyzes the isomerization of all-trans- to 9-cis-ß-carotene, and could be involved in the isomerization of zeaxanthin, while CsD27-3 catalyzes the isomerization of all-trans- to cis-ζ-carotene and all-trans- to cis-neurosporene. Our data show that CsD27-1 and CsD27-3 enzymes are both involved in carotenoid isomerization, with CsD27-1 being specific to chromoplast/amyloplast-containing tissue, and CsD27-3 more specific to chloroplast-containing tissues. Additionally, we show that CsD27-1 is co-expressed with CCD7 and CCD8 mycorrhized roots, whereas CsD27-3 is expressed at higher levels than CRTISO and Z-ISO and showed circadian regulation in leaves. Overall, our data extend the knowledge about carotenoid isomerization and their implications in several physiological and ecological processes.


Subject(s)
Crocus , zeta Carotene , Antioxidants , Carotenoids/metabolism , Crocus/genetics , Crocus/metabolism , Isomerases/metabolism , Plant Growth Regulators/metabolism , Zeaxanthins , beta Carotene/metabolism , zeta Carotene/metabolism
7.
Metabolites ; 12(7)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35888700

ABSTRACT

Crocins are high-value compounds with industrial and food applications. Saffron is currently the main source of these soluble pigments, but its high market price hinders its use by sectors, such as pharmaceutics. Enzymes involved in the production of these compounds have been identified in saffron, Buddleja, and gardenia. In this study, the enzyme from Buddleja, BdCCD4.1, was constitutively expressed in Nicotiana glauca, a tobacco species with carotenoid-pigmented petals. The transgenic lines produced significant levels of crocins in their leaves and petals. However, the accumulation of crocins was, in general, higher in the leaves than in the petals, reaching almost 302 µg/g DW. The production of crocins was associated with decreased levels of endogenous carotenoids, mainly ß-carotene. The stability of crocins in leaf and petal tissues was evaluated after three years of storage, showing an average reduction of 58.06 ± 2.20% in the petals, and 78.37 ± 5.08% in the leaves. This study illustrates the use of BdCCD4.1 as an effective tool for crocin production in N. glauca and how the tissue has an important impact on the stability of produced high-value metabolites during storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...