Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
BMC Genomics ; 23(1): 599, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35978291

ABSTRACT

BACKGROUND: Somatic copy number alterations (SCNAs) are an important class of genomic alteration in cancer. They are frequently observed in cancer samples, with studies showing that, on average, SCNAs affect 34% of a cancer cell's genome. Furthermore, SCNAs have been shown to be major drivers of tumour development and have been associated with response to therapy and prognosis. Large-scale cancer genome studies suggest that tumours are driven by somatic copy number alterations (SCNAs) or single-nucleotide variants (SNVs). Despite the frequency of SCNAs and their clinical relevance, the use of genomics assays in the clinic is biased towards targeted gene panels, which identify SNVs but provide limited scope to detect SCNAs throughout the genome. There is a need for a comparably low-cost and simple method for high-resolution SCNA profiling. RESULTS: We present conliga, a fully probabilistic method that infers SCNA profiles from a low-cost, simple, and clinically-relevant assay (FAST-SeqS). When applied to 11 high-purity oesophageal adenocarcinoma samples, we obtain good agreement (Spearman's rank correlation coefficient, rs=0.94) between conliga's inferred SCNA profiles using FAST-SeqS data (approximately £14 per sample) and those inferred by ASCAT using high-coverage WGS (gold-standard). We find that conliga outperforms CNVkit (rs=0.89), also applied to FAST-SeqS data, and is comparable to QDNAseq (rs=0.96) applied to low-coverage WGS, which is approximately four-fold more expensive, more laborious and less clinically-relevant. By performing an in silico dilution series experiment, we find that conliga is particularly suited to detecting SCNAs in low tumour purity samples. At two million reads per sample, conliga is able to detect SCNAs in all nine samples at 3% tumour purity and as low as 0.5% purity in one sample. Crucially, we show that conliga's hidden state information can be used to decide when a sample is abnormal or normal, whereas CNVkit and QDNAseq cannot provide this critical information. CONCLUSIONS: We show that conliga provides high-resolution SCNA profiles using a convenient, low-cost assay. We believe conliga makes FAST-SeqS a more clinically valuable assay as well as a useful research tool, enabling inexpensive and fast copy number profiling of pre-malignant and cancer samples.


Subject(s)
DNA Copy Number Variations , Neoplasms , Base Sequence , DNA , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplasms/genetics
2.
Cell Rep ; 37(11): 110103, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34910918

ABSTRACT

Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.


Subject(s)
Cell Differentiation , Cell Lineage , Endothelium, Vascular/pathology , Glycolysis , Hematopoiesis , Hematopoietic Stem Cells/pathology , Sodium-Calcium Exchanger/physiology , Animals , Endothelium, Vascular/metabolism , Female , Hematopoietic Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Phosphorylation , Single-Cell Analysis , Transcriptome
3.
Cell Stem Cell ; 28(11): 2009-2019.e4, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34358441

ABSTRACT

The tissue dynamics that govern maintenance and regeneration of the pancreas remain largely unknown. In particular, the presence and nature of a cellular hierarchy remains a topic of debate. Previous lineage tracing strategies in the pancreas relied on specific marker genes for clonal labeling, which left other populations untested and failed to account for potential widespread phenotypical plasticity. Here we employed a tracing system that depends on replication-induced clonal marks. We found that, in homeostasis, steady acinar replacement events characterize tissue dynamics, to which all acinar cells have an equal ability to contribute. Similarly, regeneration following pancreatitis was best characterized by an acinar self-replication model because no evidence of a cellular hierarchy was detected. In particular, rapid regeneration in the pancreas was found to be driven by an accelerated rate of acinar fission-like events. These results provide a comprehensive and quantitative model of cell dynamics in the exocrine pancreas.


Subject(s)
Pancreas, Exocrine , Pancreatitis , Acinar Cells , Homeostasis , Humans , Pancreas
4.
Genome Res ; 31(7): 1159-1173, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34088716

ABSTRACT

Regulatory interactions mediated by transcription factors (TFs) make up complex networks that control cellular behavior. Fully understanding these gene regulatory networks (GRNs) offers greater insight into the consequences of disease-causing perturbations than can be achieved by studying single TF binding events in isolation. Chromosomal translocations of the lysine methyltransferase 2A (KMT2A) gene produce KMT2A fusion proteins such as KMT2A-AFF1 (previously MLL-AF4), causing poor prognosis acute lymphoblastic leukemias (ALLs) that sometimes relapse as acute myeloid leukemias (AMLs). KMT2A-AFF1 drives leukemogenesis through direct binding and inducing the aberrant overexpression of key genes, such as the anti-apoptotic factor BCL2 and the proto-oncogene MYC However, studying direct binding alone does not incorporate possible network-generated regulatory outputs, including the indirect induction of gene repression. To better understand the KMT2A-AFF1-driven regulatory landscape, we integrated ChIP-seq, patient RNA-seq, and CRISPR essentiality screens to generate a model GRN. This GRN identified several key transcription factors such as RUNX1 that regulate target genes downstream of KMT2A-AFF1 using feed-forward loop (FFL) and cascade motifs. A core set of nodes are present in both ALL and AML, and CRISPR screening revealed several factors that help mediate response to the drug venetoclax. Using our GRN, we then identified a KMT2A-AFF1:RUNX1 cascade that represses CASP9, as well as KMT2A-AFF1-driven FFLs that regulate BCL2 and MYC through combinatorial TF activity. This illustrates how our GRN can be used to better connect KMT2A-AFF1 behavior to downstream pathways that contribute to leukemogenesis, and potentially predict shifts in gene expression that mediate drug response.

5.
Nature ; 594(7863): 436-441, 2021 06.
Article in English | MEDLINE | ID: mdl-34079128

ABSTRACT

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3ß. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Cell Competition , Genes, APC , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Mutation , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Adenomatous Polyposis Coli Protein/deficiency , Animals , Cell Differentiation/genetics , Female , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Humans , Intestinal Neoplasms/metabolism , Lithium Chloride/pharmacology , Male , Mice , Organoids/cytology , Organoids/metabolism , Organoids/pathology , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/metabolism
6.
Gastroenterology ; 161(2): 548-559.e23, 2021 08.
Article in English | MEDLINE | ID: mdl-33895166

ABSTRACT

BACKGROUND & AIMS: Colorectal cancer (CRC) is thought to arise when the cumulative mutational burden within colonic crypts exceeds a certain threshold that leads to clonal expansion and ultimately neoplastic transformation. Therefore, quantification of the fixation and subsequent expansion of somatic mutations in normal epithelium is key to understanding colorectal cancer initiation. The aim of the present study was to determine how advantaged expansions can be accommodated in the human colon. METHODS: Immunohistochemistry was used to visualize loss of the cancer driver KDM6A in formalin-fixed paraffin-embedded (FFPE) normal human colonic epithelium. Combining microscopy with neural network-based image analysis, we determined the frequencies of KDM6A-mutant crypts and fission/fusion intermediates as well as the spatial distribution of clones. Mathematical modeling then defined the dynamics of their fixation and expansion. RESULTS: Interpretation of the age-related behavior of KDM6A-negative clones revealed significant competitive advantage in intracrypt dynamics as well as a 5-fold increase in crypt fission rate. This was not accompanied by an increase in crypt fusion. Mathematical modeling of crypt spacing identifies evidence for a crypt diffusion process. We define the threshold fission rate at which diffusion fails to accommodate new crypts, which can be exceeded by KRAS activating mutations. CONCLUSIONS: Advantaged gene mutations in KDM6A expand dramatically by crypt fission but not fusion. The crypt diffusion process enables accommodation of the additional crypts up to a threshold value, beyond which polyp growth may occur. The fission rate associated with KRAS mutations offers a potential explanation for KRAS-initiated polyps.


Subject(s)
Cell Proliferation , Cell Transformation, Neoplastic/genetics , Colonic Polyps/genetics , Colorectal Neoplasms/genetics , Epithelial Cells/pathology , Histone Demethylases/genetics , Intestinal Mucosa/pathology , Mutation , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Colonic Polyps/metabolism , Colonic Polyps/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Diffusion , Epithelial Cells/metabolism , Female , Histone Demethylases/metabolism , Humans , Intestinal Mucosa/metabolism , Male , Middle Aged , Models, Biological , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Young Adult
7.
Cell ; 184(3): 810-826.e23, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33406409

ABSTRACT

Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer's patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work.


Subject(s)
Intestines/cytology , Intestines/growth & development , Single-Cell Analysis , Endothelial Cells/cytology , Enteric Nervous System/cytology , Fetus/embryology , Fibroblasts/cytology , Humans , Immunity , Intestinal Diseases/congenital , Intestinal Diseases/pathology , Intestinal Mucosa/growth & development , Intestines/blood supply , Ligands , Mesoderm/cytology , Neovascularization, Physiologic , Pericytes/cytology , Stem Cells/cytology , Time Factors , Transcription Factors/metabolism
8.
Dis Model Mech ; 14(1)2021 01 01.
Article in English | MEDLINE | ID: mdl-33093165

ABSTRACT

Somatic models of tissue pathology commonly use induction of gene-specific mutations in mice mediated by spatiotemporal regulation of Cre recombinase. Subsequent investigation of the onset and development of disease can be limited by the inability to track changing cellular behaviours over time. Here, a lineage-tracing approach based on ligand-dependent activation of Dre recombinase that can be employed independently of Cre is described. The clonal biology of the intestinal epithelium following Cre-mediated stabilisation of ß-catenin reveals that, within tumours, many new clones rapidly become extinct. Surviving clones show accelerated population of tumour glands compared to normal intestinal crypts but in a non-uniform manner, indicating that intra-tumour glands follow heterogeneous dynamics. In tumour-adjacent epithelia, clone sizes are smaller than in the background epithelia, as a whole. This suggests a zone of ∼seven crypt diameters within which clone expansion is inhibited by tumours and that may facilitate their growth.


Subject(s)
Intestinal Neoplasms/genetics , Intestinal Neoplasms/metabolism , Mutation , Animals , Antibodies, Monoclonal/chemistry , Cell Lineage , Colon/metabolism , Epithelial Cells/metabolism , Epithelium/metabolism , Escherichia coli Proteins/metabolism , Female , Integrases/metabolism , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Intestines/metabolism , Male , Mice , Mice, Inbred C57BL , Neoplasms/metabolism , Probability , Recombinases/metabolism , Stem Cells/cytology , beta Catenin/metabolism
9.
Haematologica ; 106(4): 1106-1119, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32527952

ABSTRACT

The megakaryocyte/erythroid Transient Myeloproliferative Disorder (TMD) in newborns with Down Syndrome (DS) occurs when N-terminal truncating mutations of the hemopoietic transcription factor GATA1, that produce GATA1short protein (GATA1s), are acquired early in development. Prior work has shown that murine GATA1s, by itself, causes a transient yolk sac myeloproliferative disorder. However, it is unclear where in the hemopoietic cellular hierarchy GATA1s exerts its effects to produce this myeloproliferative state. Here, through a detailed examination of hemopoiesis from murine GATA1s ES cells and GATA1s embryos we define defects in erythroid and megakaryocytic differentiation that occur relatively late in hemopoiesis. GATA1s causes an arrest late in erythroid differentiation in vivo, and even more profoundly in ES-cell derived cultures, with a marked reduction of Ter-119 cells and reduced erythroid gene expression. In megakaryopoiesis, GATA1s causes a differentiation delay at a specific stage, with accumulation of immature, kit-expressing CD41hi megakaryocytic cells. In this specific megakaryocytic compartment, there are increased numbers of GATA1s cells in S-phase of cell cycle and reduced number of apoptotic cells compared to GATA1 cells in the same cell compartment. There is also a delay in maturation of these immature GATA1s megakaryocytic lineage cells compared to GATA1 cells at the same stage of differentiation. Finally, even when GATA1s megakaryocytic cells mature, they mature aberrantly with altered megakaryocyte-specific gene expression and activity of the mature megakaryocyte enzyme, acetylcholinesterase. These studies pinpoint the hemopoietic compartment where GATA1s megakaryocyte myeloproliferation occurs, defining where molecular studies should now be focussed to understand the oncogenic action of GATA1s.


Subject(s)
Down Syndrome , Leukemoid Reaction , Animals , Cell Differentiation , GATA1 Transcription Factor/genetics , Humans , Infant, Newborn , Megakaryocytes , Mice
10.
Curr Opin Hematol ; 27(4): 232-240, 2020 07.
Article in English | MEDLINE | ID: mdl-32427596

ABSTRACT

PURPOSE OF REVIEW: In hematopoiesis, rapid cell fate decisions are necessary for timely responses to environmental stimuli resulting in the production of diverse types of blood cells. Early studies have led to a hierarchical, tree-like view of hematopoiesis with hematopoietic stem cells residing at the apex and serially branching out to give rise to bipotential progenitors with increasingly restricted lineage potential. Recent single-cell studies have challenged some aspects of the classical model of hematopoiesis. Here, we review the latest articles on cell fate decision in hematopoietic progenitors, highlighting single-cell studies that have questioned previously established concepts and those that have reaffirmed them. RECENT FINDINGS: The hierarchical organization of hematopoiesis and the importance of transcription factors have been largely validated at the single-cell level. In contrast, single-cell studies have shown that lineage commitment is progressive rather than switch-like as originally proposed. Furthermore, the reconstruction of cell fate paths suggested the existence of a gradient of hematopoietic progenitors that are in a continuum of changing fate probabilities rather than in a static bipotential state, leading us to reconsider the notion of bipotential progenitors. SUMMARY: Single-cell transcriptomic and proteomic studies have transformed our view of lineage commitment and offer a drastically different perspective on hematopoiesis.


Subject(s)
Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Proteomics , Single-Cell Analysis , Transcription, Genetic , Animals , Humans
11.
Genetics ; 212(3): 655-665, 2019 07.
Article in English | MEDLINE | ID: mdl-31126976

ABSTRACT

Microsatellite sequences have an enhanced susceptibility to mutation, and can act as sentinels indicating elevated mutation rates and increased risk of cancer. The probability of mutant fixation within the intestinal epithelium is dictated by a combination of stem cell dynamics and mutation rate. Here, we exploit this relationship to infer microsatellite mutation rates. First a sensitive, multiplexed, and quantitative method for detecting somatic changes in microsatellite length was developed that allowed the parallel detection of mutant [CA]n sequences from hundreds of low-input tissue samples at up to 14 loci. The method was applied to colonic crypts in Mus musculus, and enabled detection of mutant subclones down to 20% of the cellularity of the crypt (∼50 of 250 cells). By quantifying age-related increases in clone frequencies for multiple loci, microsatellite mutation rates in wild-type and Msh2-deficient epithelium were established. An average 388-fold increase in mutation per mitosis rate was observed in Msh2-deficient epithelium (2.4 × 10-2) compared to wild-type epithelium (6.2 × 10-5).


Subject(s)
Adult Stem Cells/metabolism , Intestinal Mucosa/cytology , Microsatellite Repeats , MutS Homolog 2 Protein/genetics , Mutation Rate , Adult Stem Cells/cytology , Animals , Female , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Mitosis , MutS Homolog 2 Protein/deficiency
12.
Cell Stem Cell ; 24(5): 812-820.e5, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30880026

ABSTRACT

Hematopoiesis provides an accessible system for studying the principles underlying cell-fate decisions in stem cells. Proposed models of hematopoiesis suggest that quantitative changes in lineage-specific transcription factors (LS-TFs) underlie cell-fate decisions. However, evidence for such models is lacking as TF levels are typically measured via RNA expression rather than by analyzing temporal changes in protein abundance. Here, we used single-cell mass cytometry and absolute quantification by mass spectrometry to capture the temporal dynamics of TF protein expression in individual cells during human erythropoiesis. We found that LS-TFs from alternate lineages are co-expressed, as proteins, in individual early progenitor cells and quantitative changes of LS-TFs occur gradually rather than abruptly to direct cell-fate decisions. Importantly, upregulation of a megakaryocytic TF in early progenitors is sufficient to deviate cells from an erythroid to a megakaryocyte trajectory, showing that quantitative changes in protein abundance of LS-TFs in progenitors can determine alternate cell fates.


Subject(s)
Erythropoiesis/physiology , Hematopoietic Stem Cells/physiology , Proteomics/methods , Antigens, CD34/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Gene Expression Regulation , Hematopoiesis , Humans , Mass Spectrometry , Single-Cell Analysis , Transcription Factors/metabolism , Transcriptional Activation , Umbilical Cord/cytology
13.
Proc Natl Acad Sci U S A ; 116(13): 6140-6145, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30850544

ABSTRACT

Cancer evolution is predominantly studied by focusing on differences in the genetic characteristics of malignant cells within tumors. However, the spatiotemporal dynamics of clonal outgrowth that underlie evolutionary trajectories remain largely unresolved. Here, we sought to unravel the clonal dynamics of colorectal cancer (CRC) expansion in space and time by using a color-based clonal tracing method. This method involves lentiviral red-green-blue (RGB) marking of cell populations, which enabled us to track individual cells and their clonal outgrowth during tumor initiation and growth in a xenograft model. We found that clonal expansion largely depends on the location of a clone, as small clones reside in the center and large clones mostly drive tumor growth at the border. These dynamics are recapitulated in a computational model, which confirms that the clone position within a tumor rather than cell-intrinsic features, is crucial for clonal outgrowth. We also found that no significant clonal loss occurs during tumor growth and clonal dispersal is limited in most models. Our results imply that, in addition to molecular features of clones such as (epi-)genetic differences between cells, clone location and the geometry of tumor growth are crucial for clonal expansion. Our findings suggest that either microenvironmental signals on the tumor border or differences in physical properties within the tumor, are major contributors to explain heterogeneous clonal expansion. Thus, this study provides further insights into the dynamics of solid tumor growth and progression, as well as the origins of tumor cell heterogeneity in a relevant model system.


Subject(s)
Colorectal Neoplasms/pathology , Animals , Cell Lineage , Clone Cells , Colorectal Neoplasms/genetics , Female , Heterografts , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Spatio-Temporal Analysis
14.
Nat Cell Biol ; 20(10): 1193-1202, 2018 10.
Article in English | MEDLINE | ID: mdl-30177776

ABSTRACT

Solid malignancies have been speculated to depend on cancer stem cells (CSCs) for expansion and relapse after therapy. Here we report on quantitative analyses of lineage tracing data from primary colon cancer xenograft tissue to assess CSC functionality in a human solid malignancy. The temporally obtained clone size distribution data support a model in which stem cell function in established cancers is not intrinsically, but is entirely spatiotemporally orchestrated. Functional stem cells that drive tumour expansion predominantly reside at the tumour edge, close to cancer-associated fibroblasts. Hence, stem cell properties change in time depending on the cell location. Furthermore, although chemotherapy enriches for cells with a CSC phenotype, in this context functional stem cell properties are also fully defined by the microenvironment. To conclude, we identified osteopontin as a key cancer-associated fibroblast-produced factor that drives in situ clonogenicity in colon cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Animals , Cell Proliferation/genetics , Cells, Cultured , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oxaliplatin/administration & dosage , Tamoxifen/administration & dosage , Tumor Microenvironment/genetics
15.
Cell Stem Cell ; 23(3): 436-443.e7, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100168

ABSTRACT

The intestinal epithelium is largely maintained by self-renewing stem cells but with apparently committed progenitors also contributing, particularly following tissue damage. However, the mechanism of, and requirement for, progenitor plasticity in mediating pathological response remain unknown. Here we show that phosphorylation of the transcription factor Atoh1 is required for both the contribution of secretory progenitors to the stem cell pool and for a robust regenerative response. As confirmed by lineage tracing, Atoh1+ cells (Atoh1(WT)CreERT2 mice) give rise to multilineage intestinal clones both in the steady state and after tissue damage. In a phosphomutant Atoh1(9S/T-A)CreERT2 line, preventing phosphorylation of ATOH1 protein acts to promote secretory differentiation and inhibit the contribution of progenitors to self-renewal. Following chemical colitis, Atoh1+ cells of Atoh1(9S/T-A)CreERT2 mice have reduced clonogenicity that affects overall regeneration. Progenitor plasticity maintains robust self-renewal in the intestinal epithelium, and the balance between stem and progenitor fate is directly coordinated by ATOH1 multisite phosphorylation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Intestinal Mucosa/metabolism , Regeneration , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred C57BL , Phosphorylation
16.
Cell Stem Cell ; 22(6): 909-918.e8, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29779891

ABSTRACT

We investigated the means and timing by which mutations become fixed in the human colonic epithelium by visualizing somatic clones and mathematical inference. Fixation requires two sequential steps. First, one of approximately seven active stem cells residing within each colonic crypt has to be mutated. Second, the mutated stem cell has to replace neighbors to populate the entire crypt in a process that takes several years. Subsequent clonal expansion due to crypt fission is infrequent for neutral mutations (around 0.7% of all crypts undergo fission in a single year). Pro-oncogenic mutations subvert both stem cell replacement to accelerate fixation and clonal expansion by crypt fission to achieve high mutant allele frequencies with age. The benchmarking of these behaviors allows the advantage associated with different gene-specific mutations to be compared irrespective of the cellular mechanisms by which they are conferred.


Subject(s)
Antigens, Nuclear/genetics , Colon/cytology , Epithelial Cells/metabolism , Epithelium/metabolism , Monoamine Oxidase/genetics , Mutation , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Alleles , Antigens, Nuclear/metabolism , Cell Cycle Proteins , Child , Humans , Middle Aged , Models, Statistical , Monoamine Oxidase/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Young Adult
17.
Nat Commun ; 8(1): 664, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28939870

ABSTRACT

The proliferative and functional heterogeneity among seemingly uniform cells is a universal phenomenon. Identifying the underlying factors requires single-cell analysis of function and proliferation. Here we show that the pancreatic beta-cells in zebrafish exhibit different growth-promoting and functional properties, which in part reflect differences in the time elapsed since birth of the cells. Calcium imaging shows that the beta-cells in the embryonic islet become functional during early zebrafish development. At later stages, younger beta-cells join the islet following differentiation from post-embryonic progenitors. Notably, the older and younger beta-cells occupy different regions within the islet, which generates topological asymmetries in glucose responsiveness and proliferation. Specifically, the older beta-cells exhibit robust glucose responsiveness, whereas younger beta-cells are more proliferative but less functional. As the islet approaches its mature state, heterogeneity diminishes and beta-cells synchronize function and proliferation. Our work illustrates a dynamic model of heterogeneity based on evolving proliferative and functional beta-cell states.Βeta-cells have recently been shown to be heterogeneous with regard to morphology and function. Here, the authors show that ß-cells in zebrafish switch from proliferative to functional states with increasing time since ß-cell birth, leading to functional and proliferative heterogeneity.


Subject(s)
Insulin-Secreting Cells/cytology , Islets of Langerhans/cytology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Cell Lineage , Cell Proliferation , Cytological Techniques/methods , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/drug effects , Glucose/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/physiology , Islets of Langerhans/embryology , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , Urocortins/metabolism , Zebrafish/genetics
19.
Science ; 342(6161): 995-8, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24264992

ABSTRACT

Cancer is a disease in which cells accumulate genetic aberrations that are believed to confer a clonal advantage over cells in the surrounding tissue. However, the quantitative benefit of frequently occurring mutations during tumor development remains unknown. We quantified the competitive advantage of Apc loss, Kras activation, and P53 mutations in the mouse intestine. Our findings indicate that the fate conferred by these mutations is not deterministic, and many mutated stem cells are replaced by wild-type stem cells after biased, but still stochastic events. Furthermore, P53 mutations display a condition-dependent advantage, and especially in colitis-affected intestines, clones harboring mutations in this gene are favored. Our work confirms the previously theoretical notion that the tissue architecture of the intestine suppresses the accumulation of mutated lineages.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Neoplastic Stem Cells/pathology , Adenomatous Polyposis Coli Protein/genetics , Animals , Mice , Mice, Mutant Strains , Models, Biological , Mutation , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Transcriptional Activation , Tumor Suppressor Protein p53/genetics
20.
Cell Stem Cell ; 13(5): 626-33, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24035355

ABSTRACT

Lineage-tracing approaches, widely used to characterize stem cell populations, rely on the specificity and stability of individual markers for accurate results. We present a method in which genetic labeling in the intestinal epithelium is acquired as a mutation-induced clonal mark during DNA replication. By determining the rate of mutation in vivo and combining this data with the known neutral-drift dynamics that describe intestinal stem cell replacement, we quantify the number of functional stem cells in crypts and adenomas. Contrary to previous reports, we find that significantly lower numbers of "working" stem cells are present in the intestinal epithelium (five to seven per crypt) and in adenomas (nine per gland), and that those stem cells are also replaced at a significantly lower rate. These findings suggest that the bulk of tumor stem cell divisions serve only to replace stem cell loss, with rare clonal victors driving gland repopulation and tumor growth.


Subject(s)
Adenoma/pathology , Intestinal Mucosa/cytology , Intestinal Mucosa/pathology , Stem Cells/cytology , Adenoma/genetics , Adenoma/metabolism , Animals , Intestinal Mucosa/metabolism , Mice , Mice, Transgenic , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL