Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Biophys ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134335

ABSTRACT

The rate of protein synthesis is slower than many folding reactions and varies depending on the synonymous codons encoding the protein sequence. Synonymous codon substitutions thus have the potential to regulate cotranslational protein folding mechanisms, and a growing number of proteins have been identified with folding mechanisms sensitive to codon usage. Typically, these proteins have complex folding pathways and kinetically stable native structures. Kinetically stable proteins may fold only once over their lifetime, and thus, codon-mediated regulation of the pioneer round of protein folding can have a lasting impact. Supporting an important role for codon usage in folding, conserved patterns of codon usage appear in homologous gene families, hinting at selection. Despite these exciting developments, there remains few experimental methods capable of quantifying translation elongation rates and cotranslational folding mechanisms in the cell, which challenges the development of a predictive understanding of how biology uses codons to regulate protein folding. Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
JCI Insight ; 5(12)2020 06 18.
Article in English | MEDLINE | ID: mdl-32554925

ABSTRACT

BACKGROUNDPrediction of adverse outcomes in cerebral malaria (CM) is difficult. We hypothesized that cell-free DNA (cfDNA) levels would facilitate identification of severe and potentially fatal CM cases.METHODSIn this retrospective study, plasma from Malawian children with CM (n = 134), uncomplicated malaria (UM, n = 77), and healthy controls (HC, n = 60) was assayed for cfDNA using a fluorescence assay. Host and parasite cfDNA was measured by quantitative PCR. Immune markers were determined by ELISA, Luminex, or cytometric bead array.RESULTSTotal cfDNA increased with malaria severity (HC versus UM, P < 0.001; HC versus CM, P < 0.0001; UM versus CM, P < 0.0001), was elevated in retinopathy-positive (Ret+) CM relative to Ret- CM (7.66 versus 5.47 ng/µL, P = 0.027), and differentiated Ret+ fatal cases from survivors (AUC 0.779; P < 0.001). cfDNA levels in patients with non-malarial febrile illness (NMF, P = 0.25) and non-malarial coma (NMC, P = 0.99) were comparable with UM. Host DNA, rather than parasite DNA, was the major cfDNA contributor (UM, 268 versus 67 pg/µL; CM, 2824 versus 463 pg/µL). Host and parasite cfDNA distinguished CM by retinopathy (host, AUC 0.715, P = 0.0001; parasite, AUC 0.745, P = 0.0001), but only host cfDNA distinguished fatal cases (AUC 0.715, P = 0.0001). Total cfDNA correlated with neutrophil markers IL-8 (rs = 0.433, P < 0.0001) and myeloperoxidase (rs = 0.683, P < 0.0001).CONCLUSIONQuantifying plasma cfDNA is a simple assay useful in identifying children at risk for fatal outcome and has promise as a point-of-care assay. Elevated cfDNA suggests a link with host inflammatory pathways in fatal CM.FUNDINGNIH NCATS (AK), Burroughs-Wellcome (AK), and National Health and Medical Research Council of Australia (SJR).


Subject(s)
Biomarkers/blood , Cell-Free Nucleic Acids/blood , Malaria, Cerebral/diagnosis , Malaria, Falciparum/blood , Plasma/metabolism , Adolescent , Child , Child, Preschool , Female , Humans , Malaria, Cerebral/blood , Malaria, Cerebral/parasitology , Malaria, Falciparum/diagnosis , Male , Neutrophils/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...