Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 34: 106650, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33364273

ABSTRACT

This article describes data on selected resistance markers for antimalarial drugs used in Zambia. Antimalarial drug resistance has hindered the progress in the control and elimination of malaria. Blood samples were collected during a cross-sectional household survey, conducted during the peak malaria transmission, April to May of 2017. Dried blood spots were collected during the survey and transported to a laboratory for analysis. The analysed included polymerase chain reaction (PCR) followed by high resolution melt (HRM) for mutations associated with Sulfadoxine-pyrimethamine resistance in the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and P. falciparum dihydropteroate synthase (Pfdhps) genes. Mutations associated with artemether-lumefantrine resistance in falciparum multi-drug resistance gene 1 (Pfmdr1) were also assessed using PCR and HRM analysis, whereas the P. falciparum Kelch 13 (PfK13) gene was assessed using nested PCR followed by amplicon sequencing.

2.
Acta Trop ; 212: 105704, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33002448

ABSTRACT

Antimalarial resistance is an inevitable feature of control efforts and a key threat to achieving malaria elimination. Plasmodium falciparum, the deadliest of several species causing human malaria, has developed resistance to essentially all antimalarials. This study sought to investigate the prevalence of molecular markers associated with resistance to sulfadoxine-pyrimethamine (SP) and artemether-lumefantrine (AL) in Southern and Western provinces in Zambia. SP is used primarily for intermittent preventive treatment during pregnancy, while AL is the first-line antimalarial for uncomplicated malaria in Zambia. Blood samples were collected from household members of all ages in a cross-sectional survey conducted during peak malaria transmission, April to May of 2017, and amplified by polymerase chain reaction (PCR). Amplicons were then analysed by high-resolution melt following PCR to identify mutations associated with SP resistance in the P. falciparum dihydrofolate reductase (Pfdhfr) and P. falciparum dihydropteroate synthase (Pfdhps) genes and lumefantrine resistance in the P. falciparum multi-drug resistance 1 (Pfmdr1) gene. Finally, artemether resistance was assessed in the P. falciparum Kelch 13 (PfK13) gene using nested PCR followed by amplicon sequencing. The results showed a high frequency of genotypic-resistant Pfdhps A437G (93.2%) and Pfdhfr C59R (86.7%), N51I (80.9%), and S108N (80.8%) of which a high proportion (82.4%) were quadruple mutants (Pfdhfr N51I, C59R, S108N +Pfdhps A437G). Pfmrd1 N86Y, Y186F, and D1246Y - NFD mutant haplotypes were observed in 41.9% of isolates. The high prevalence of quadruple dhps/dhfr mutants indicates strong antifolate drug pressure from SP or other drugs (e.g., co-trimoxazole). Three samples contained PfK13 mutations, two synonymous (T478 and V666) and one non-synonymous (A578S), none of which have been associated with delayed clearance. This suggests that artemisinin remains efficacious in Zambia, however, the moderately high prevalence of approximately 40% Pfmdr1 NFD mutations calls for close monitoring of AL.


Subject(s)
Antimalarials/pharmacology , Dihydropteroate Synthase/genetics , Malaria, Falciparum/drug therapy , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Tetrahydrofolate Dehydrogenase/genetics , Artemether, Lumefantrine Drug Combination/pharmacology , Cross-Sectional Studies , Drug Combinations , Drug Resistance/genetics , Humans , Plasmodium falciparum/drug effects , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...