Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Matern Child Nutr ; : e13688, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886171

ABSTRACT

We examined the association between serum aflatoxin B1-lysine adduct (AFB1-lys) levels in pregnant women and adverse pregnancy outcomes (low birthweight, miscarriage and stillbirth) through a nested matched case-control study of pregnant women enroled at ≤28 weeks' gestation in Mombasa, Kenya, from 2017 to 2019. Cases comprised women with an adverse birth outcome, defined as either delivery of a singleton infant weighing <2500 g, or a miscarriage, or a stillbirth, while controls were women who delivered a singleton live infant with a birthweight of ≥2500 g. Cases were matched to controls at a ratio of 1:2 based on maternal age at enrolment, gestational age at enrolment and study site. The primary exposure was serum AFB1-lys. The study included 125 cases and 250 controls. The median gestation age when serum samples were collected was 23.0 weeks (interquartile range [IQR]: 18.1-26.0) and 23.5 (IQR: 18.1-26.5) among cases and controls, respectively. Of the 375 tested sera, 145 (38.7%) had detectable serum AFB1-lys: 36.0% in cases and 40.0% in controls. AFB1-lys adduct levels were not associated with adverse birth outcomes on multivariable analysis. Mid-upper arm circumference was associated with a 6% lower odds of adverse birth outcome for every unit increase (p = 0.023). Two-fifths of pregnant women had detectable levels of aflatoxin midway through pregnancy. However, we did not detect an association with adverse pregnancy outcomes, likely because of low serum AFB1-lys levels and low power, restricting meaningful comparison. More research is needed to understand the public health risk of aflatoxin in pregnant women to unborn children.

2.
Emerg Infect Dis ; 30(5): 900-907, 2024 May.
Article in English | MEDLINE | ID: mdl-38666563

ABSTRACT

Understanding SARS-CoV-2 infection in populations at increased risk for poor health is critical to reducing disease. We describe the epidemiology of SARS-CoV-2 infection in Kakuma Refugee Camp Complex, Kenya. We performed descriptive analyses of SARS-CoV-2 infection in the camp and surrounding community during March 16, 2020‒December 31, 2021. We identified cases in accordance with national guidelines.We estimated fatality ratios and attack rates over time using locally weighted scatterplot smoothing for refugees, host community members, and national population. Of the 18,864 SARS-CoV-2 tests performed, 1,024 were positive, collected from 664 refugees and 360 host community members. Attack rates were 325.0/100,000 population (CFR 2.9%) for refugees,150.2/100,000 population (CFR 1.11%) for community, and 628.8/100,000 population (CFR 1.83%) nationwide. During 2020-2021, refugees experienced a lower attack rate but higher CFR than the national population, underscoring the need to prioritize SARS-CoV-2 mitigation measures, including vaccination.


Subject(s)
COVID-19 , Refugee Camps , Refugees , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/mortality , Kenya/epidemiology , Adult , Male , Female , Young Adult , Middle Aged , Adolescent , Child , Refugees/statistics & numerical data , Child, Preschool , Infant , Aged , Incidence
3.
PLOS Glob Public Health ; 4(4): e0002968, 2024.
Article in English | MEDLINE | ID: mdl-38630844

ABSTRACT

The COVID-19 pandemic caused widespread changes and disruptions to healthcare seeking behavior. There are limited studies on the effect of the COVID-19 pandemic on healthcare seeking patterns in low-and middle-income countries (LMICs), especially in settings with inequitable access to healthcare in rural and urban informal settlements. We investigated the effect of the COVID-19 pandemic on reported healthcare seeking at health facilities and chemists using morbidity data from participants in an ongoing population-based infectious disease surveillance platform in Asembo in Siaya County, a rural setting in western Kenya and Kibera, an urban informal settlement in Nairobi County. We described healthcare seeking patterns before (from 1st January 2016 to 12th March 2020) and during the pandemic (from 13th March 2020 to 31st August 2022) by gender and age for any reported illness and select clinical syndromes using frequencies and percentages. We used a generalized estimating equation with an exchangeable correlation structure to assess the effect of the pandemic on healthcare seeking adjusting for gender and age. Overall, there was a 19% (adjusted odds ratio, aOR: 0.81; 95% Confidence Interval, CI: 0.79-0.83) decline in odds of seeking healthcare at health facilities for any illness in Asembo during the pandemic, and a 30% (aOR: 0.70; 95% CI: 0.67-0.73) decline in Kibera. Similarly, there was a decline in seeking healthcare by clinical syndromes, e.g., for ARI, aOR: 0.76; 95% CI:0.73-0.79 in Asembo, and aOR: 0.68; 95% CI:0.64-0.72 in Kibera. The pandemic resulted in increased healthcare seeking at chemists (aOR: 1.23; 95% CI: 1.20-1.27 in Asembo, and aOR: 1.40; 95% CI: 1.35-1.46 in Kibera). This study highlights interruptions to healthcare seeking in resource-limited settings due to the COVID-19 pandemic. The pandemic resulted in a substantial decline in seeking care at health facilities, and an increase of the same at chemists.

4.
JMIR Public Health Surveill ; 10: e50799, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526537

ABSTRACT

BACKGROUND: Little is known about the cocirculation of influenza and SARS-CoV-2 viruses during the COVID-19 pandemic and the use of respiratory disease sentinel surveillance platforms for monitoring SARS-CoV-2 activity in sub-Saharan Africa. OBJECTIVE: We aimed to describe influenza and SARS-CoV-2 cocirculation in Kenya and how the SARS-CoV-2 data from influenza sentinel surveillance correlated with that of universal national surveillance. METHODS: From April 2020 to March 2022, we enrolled 7349 patients with severe acute respiratory illness or influenza-like illness at 8 sentinel influenza surveillance sites in Kenya and collected demographic, clinical, underlying medical condition, vaccination, and exposure information, as well as respiratory specimens, from them. Respiratory specimens were tested for influenza and SARS-CoV-2 by real-time reverse transcription polymerase chain reaction. The universal national-level SARS-CoV-2 data were also obtained from the Kenya Ministry of Health. The universal national-level SARS-CoV-2 data were collected from all health facilities nationally, border entry points, and contact tracing in Kenya. Epidemic curves and Pearson r were used to describe the correlation between SARS-CoV-2 positivity in data from the 8 influenza sentinel sites in Kenya and that of the universal national SARS-CoV-2 surveillance data. A logistic regression model was used to assess the association between influenza and SARS-CoV-2 coinfection with severe clinical illness. We defined severe clinical illness as any of oxygen saturation <90%, in-hospital death, admission to intensive care unit or high dependence unit, mechanical ventilation, or a report of any danger sign (ie, inability to drink or eat, severe vomiting, grunting, stridor, or unconsciousness in children younger than 5 years) among patients with severe acute respiratory illness. RESULTS: Of the 7349 patients from the influenza sentinel surveillance sites, 76.3% (n=5606) were younger than 5 years. We detected any influenza (A or B) in 8.7% (629/7224), SARS-CoV-2 in 10.7% (768/7199), and coinfection in 0.9% (63/7165) of samples tested. Although the number of samples tested for SARS-CoV-2 from the sentinel surveillance was only 0.2% (60 per week vs 36,000 per week) of the number tested in the universal national surveillance, SARS-CoV-2 positivity in the sentinel surveillance data significantly correlated with that of the universal national surveillance (Pearson r=0.58; P<.001). The adjusted odds ratios (aOR) of clinical severe illness among participants with coinfection were similar to those of patients with influenza only (aOR 0.91, 95% CI 0.47-1.79) and SARS-CoV-2 only (aOR 0.92, 95% CI 0.47-1.82). CONCLUSIONS: Influenza substantially cocirculated with SARS-CoV-2 in Kenya. We found a significant correlation of SARS-CoV-2 positivity in the data from 8 influenza sentinel surveillance sites with that of the universal national SARS-CoV-2 surveillance data. Our findings indicate that the influenza sentinel surveillance system can be used as a sustainable platform for monitoring respiratory pathogens of pandemic potential or public health importance.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Child , Humans , SARS-CoV-2 , Influenza, Human/epidemiology , COVID-19/epidemiology , Hospital Mortality , Kenya/epidemiology , Pandemics , Sentinel Surveillance
5.
BMC Pregnancy Childbirth ; 24(1): 127, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347445

ABSTRACT

INTRODUCTION: Adverse birth outcomes particularly preterm births and congenital anomalies, are the leading causes of infant mortality globally, and the burden is highest in developing countries. We set out to determine the frequency of adverse birth outcomes and the risk factors associated with such outcomes in a cohort of pregnant women in Kenya. METHODS: From October 2017 to July 2019, pregnant women < 28 weeks gestation were enrolled and followed up until delivery in three hospitals in coastal Kenya. Newborns were examined at delivery. Among women with birth outcome data, we assessed the frequency of congenital anomalies defined as gastroschisis, umbilical hernia, limb abnormalities and Trisomy 21, and adverse birth outcomes, defined as either stillbirth, miscarriage, preterm birth, small for gestational age, or microcephaly. We used log-binomial regression to identify maternal characteristics associated with the presence of at least one adverse outcome. RESULTS: Among the 2312 women enrolled, 1916 (82.9%) had birth outcome data. Overall, 402/1916 (20.9%; 95% confidence interval (CI): 19.1-22.8) pregnancies had adverse birth outcomes. Specifically, 66/1916 (3.4%; 95% CI: 2.7-4.4) were stillbirths, 34/1916 (1.8%; 95% CI: 1.2-2.4) were miscarriages and 23/1816 (1.2%; 95% CI: 0.8-1.9) had congenital anomalies. Among the participants with anthropometric measurements data, 142/1200 (11.8%; 95% CI: 10.1 - 13.8) were small for gestational age and among the participants with ultrasound records, 143/1711 (8.4%; 95% CI: 7.1-9.8) were preterm. Febrile illnesses in current pregnancy (adjusted risk ratio (aRR): 1.7; 95% CI: 1.1-2.8), a history of poor birth outcomes in prior pregnancy (aRR: 1.8; 95% CI: 1.3-2.4) and high blood pressure in pregnancy (aRR: 3.9, 95% CI: (1.7-9.2) were independently associated with adverse birth outcomes in a model that included age, education, human immunodeficiency virus status and high blood pressure at enrolment. CONCLUSION: We found similar rates of overall adverse birth outcomes, congenital anomalies, and small for gestational age but higher rates of stillbirths and lower rates of prematurity compared to the rates that have been reported in the sub-Saharan Africa region. However, the rates of adverse birth outcomes in this study were comparable to other studies conducted in Kenya. Febrile illnesses during the current pregnancy, previous history of poor birth outcomes and high blood pressure in pregnancy are predictive of an increased risk of adverse birth outcomes.


Subject(s)
Abortion, Spontaneous , Hypertension , Pregnancy Complications , Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , Stillbirth/epidemiology , Pregnancy Outcome/epidemiology , Pregnant Women , Kenya/epidemiology , Premature Birth/epidemiology , Pregnancy Complications/epidemiology , Risk Factors , Abortion, Spontaneous/epidemiology , Fetal Growth Retardation
6.
Epidemiol Infect ; 152: e68, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305089

ABSTRACT

Women infected during pregnancy with TORCH (Toxoplasmosis, Other, Rubella, Cytomegalovirus, and Herpes simplex viruses) pathogens have a higher risk of adverse birth outcomes including stillbirth / miscarriage because of mother-to-child transmission. To investigate these risks in pregnant women in Kenya, we analyzed serum specimens from a pregnancy cohort study at three healthcare facilities. A sample of 481 participants was selected for TORCH pathogen antibody testing to determine seroprevalence. A random selection of 285 from the 481 participants was selected to measure seroconversion. These sera were tested using an IgG enzyme-linked immunosorbent assay against 10 TORCH pathogens. We found that the seroprevalence of all but three of the 10 TORCH pathogens at enrollment was >30%, except for Bordetella pertussis (3.8%), Treponema pallidum (11.4%), and varicella zoster virus (0.5%). Conversely, very few participants seroconverted during their pregnancy and were herpes simplex virus type 2 (n = 24, 11.2%), parvovirus B19 (n = 14, 6.2%), and rubella (n = 12, 5.1%). For birth outcomes, 88% of the participant had live births and 12% had stillbirths or miscarriage. Cytomegalovirus positivity at enrolment had a statistically significant positive association with a live birth outcome (p = 0.0394). Of the 10 TORCH pathogens tested, none had an association with adverse pregnancy outcome.


Subject(s)
Cytomegalovirus Infections , Pregnancy Complications, Infectious , Rubella , Seroconversion , Humans , Female , Pregnancy , Seroepidemiologic Studies , Kenya/epidemiology , Adult , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology , Rubella/epidemiology , Cytomegalovirus Infections/epidemiology , Young Adult , Herpes Simplex/epidemiology , Cohort Studies , Toxoplasmosis/epidemiology , Adolescent , Antibodies, Viral/blood
7.
BMJ Glob Health ; 8(12)2023 12 18.
Article in English | MEDLINE | ID: mdl-38114236

ABSTRACT

Event-based surveillance (EBS) can be implemented in most settings for the detection of potential health threats by recognition and immediate reporting of predefined signals. Such a system complements existing case-based and sentinel surveillance systems. With the emergence of the COVID-19 pandemic in early 2020, the Kenya Ministry of Health (MOH) modified and expanded an EBS system in both community and health facility settings for the reporting of COVID-19-related signals. Using an electronic reporting tool, m-Dharura, MOH recorded 8790 signals reported, with 3002 (34.2%) verified as events, across both community and health facility sites from March 2020 to June 2021. A subsequent evaluation found that the EBS system was flexible enough to incorporate the addition of COVID-19-related signals during a pandemic and maintain high rates of reporting from participants. Inadequate resources for follow-up investigations to reported events, lack of supportive supervision for some community health volunteers and lack of data system interoperability were identified as challenges to be addressed as the EBS system in Kenya continues to expand to additional jurisdictions.


Subject(s)
COVID-19 , Pandemics , Humans , Kenya/epidemiology , COVID-19/epidemiology , Public Health
8.
Gates Open Res ; 7: 101, 2023.
Article in English | MEDLINE | ID: mdl-37990692

ABSTRACT

Background: SARS-CoV-2 has extensively spread in cities and rural communities, and studies are needed to quantify exposure in the population. We report seroprevalence of SARS-CoV-2 in two well-characterized populations in Kenya at two time points. These data inform the design and delivery of public health mitigation measures. Methods: Leveraging on existing population based infectious disease surveillance (PBIDS) in two demographically diverse settings, a rural site in western Kenya in Asembo, Siaya County, and an urban informal settlement in Kibera, Nairobi County, we set up a longitudinal cohort of randomly selected households with serial sampling of all consenting household members in March and June/July 2021. Both sites included 1,794 and 1,638 participants in the March and June/July 2021, respectively. Individual seroprevalence of SARS-CoV-2 antibodies was expressed as a percentage of the seropositive among the individuals tested, accounting for household clustering and weighted by the PBIDS age and sex distribution. Results: Overall weighted individual seroprevalence increased from 56.2% (95%CI: 52.1, 60.2%) in March 2021 to 63.9% (95%CI: 59.5, 68.0%) in June 2021 in Kibera. For Asembo, the seroprevalence almost doubled from 26.0% (95%CI: 22.4, 30.0%) in March 2021 to 48.7% (95%CI: 44.3, 53.2%) in July 2021. Seroprevalence was highly heterogeneous by age and geography in these populations-higher seroprevalence was observed in the urban informal settlement (compared to the rural setting), and children aged <10 years had the lowest seroprevalence in both sites. Only 1.2% and 1.6% of the study participants reported receipt of at least one dose of the COVID-19 vaccine by the second round of serosurvey-none by the first round. Conclusions: In these two populations, SARS-CoV-2 seroprevalence increased in the first 16 months of the COVID-19 pandemic in Kenya. It is important to prioritize additional mitigation measures, such as vaccine distribution, in crowded and low socioeconomic settings.

9.
PLOS Glob Public Health ; 3(8): e0002141, 2023.
Article in English | MEDLINE | ID: mdl-37611028

ABSTRACT

Robust data on the impact of the COVID-19 pandemic on mortality in Africa are relatively scarce. Using data from two well-characterized populations in Kenya we aimed to estimate excess mortality during the COVID-19 pandemic period. The mortality data arise from an ongoing population-based infectious disease surveillance (PBIDS) platform, which has been operational since 2006 in rural western Kenya (Asembo, Siaya County) and an urban informal settlement (Kibera, Nairobi County), Kenya. PBIDS participants were regularly visited at home (2-3 times a year) by field workers who collected demographic data, including deaths. In addition, verbal autopsy (VA) interviews for all identified deaths are conducted. We estimated all-cause and cause-specific mortality rates before and during the height of the COVID-19 pandemic, and we compared associated mortality rates between the periods using incidence rate ratios. Excess deaths during the COVID-19 period were also estimated by modelling expected deaths in the absence of COVID-19 by applying a negative binomial regression model on historical mortality data from January 2016. Overall and monthly excess deaths were determined using the P-score metric. Spearman correlation was used to assess whether there is a relationship between the generated P-score and COVID-19 positivity rate. The all-cause mortality rate was higher during the COVID-19 period compared to the pre-COVID-19 period in Asembo [9.1 (95% CI, 8.2-10.0) vs. 7.8 (95% CI, 7.3-8.3) per 1000 person-years of observation, pyo]. In Kibera, the all-cause mortality rate was slightly lower during the COVID-19 period compared to the pre-COVID-19 period [2.6 (95% CI, 2.2-3.2 per 1000 pyo) vs. 3.1; 95% CI, 2.7-3.4 per 1000 pyo)]. An increase in all-cause mortality was observed (incidence rate ratio, IRR, 1.16; 95% CI, 1.04-1.31) in Asembo, unlike in Kibera (IRR, 0.88; 95% CI, 0.71-1.09). The notable increase in mortality rate in Asembo was observed among persons aged 50 to 64 years (IRR, 2.62; 95% CI, 1.95-3.52), persons aged 65 years and above (5.47; 95% CI, 4.60-6.50) and among females (IRR, 1.25; 95% CI, 1.07-1.46). These age and gender differences were not observed in Kibera. We observed an increase in the mortality rate due to acute respiratory infection, including pneumonia (IRR, 1.45;95% CI, 1.03-2.04), and a reduction in the mortality rate due to pulmonary tuberculosis (IRR, 0.22; 95% CI, 0.05-0.87) among older children and adults in Asembo. There was no statistically significant change in mortality rates due to leading specific causes of death in Kibera. Overall, during the COVID-19 period observed deaths were higher than expected deaths in Asembo (P-score = 6.0%) and lower than expected in Kibera (P-score = -22.3%).Using well-characterized populations in the two diverse geographic locations, we demonstrate a heterogenous impact of the COVID-19 pandemic on all-cause and cause-specific mortality rates in Kenya. We observed more deaths than expected during the COVID-19 period in our rural site in western Kenya contrary to the urban site in Nairobi, the capital city in Kenya.

10.
Vector Borne Zoonotic Dis ; 23(7): 393-396, 2023 07.
Article in English | MEDLINE | ID: mdl-37205849

ABSTRACT

Background: Zika virus (ZIKV), first described in 1947, is an arthropod-borne virus associated with sporadic outbreaks and interepidemic transmission. Recent studies have implicated nonhuman primates (NHPs) as the probable reservoir hosts. We tested archived serum samples of NHPs collected in Kenya for evidence of neutralizing ZIKV antibodies. Methods: We randomly selected 212 archived serum samples from Institute of Primate Research in Kenya collected between 1992 and 2017. These specimens were tested by microneutralization test. Results: The 212 serum samples were collected in 7 counties from 87 (41.0%) Olive baboons, 69 (32.5%) Vervet monkeys, and 49 (23.1%) Sykes monkeys. Half (50.9%) were male and 56.4% were adult. We detected ZIKV antibodies in 38 (17.9%; 95% confidence interval: 13.3-23.6) samples. Conclusions: These results suggest ZIKV transmission and potential maintenance in nature by NHPs in Kenya.


Subject(s)
Zika Virus Infection , Zika Virus , Male , Chlorocebus aethiops , Animals , Female , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary , Kenya/epidemiology , Primates , Antibodies, Neutralizing , Antibodies, Viral
11.
Public Health Nutr ; 26(12): 3013-3022, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36871962

ABSTRACT

OBJECTIVE: Identifying factors that may influence aflatoxin exposure in children under 5 years of age living in farming households in western Kenya. DESIGN: We used a mixed methods design. The quantitative component entailed serial cross-sectional interviews in 250 farming households to examine crop processing and conservation practices, household food storage and consumption and local understandings of aflatoxins. Qualitative data collection included focus group discussions (N 7) and key informant interviews (N 13) to explore explanations of harvesting and post-harvesting techniques and perceptions of crop spoilage. SETTING: The study was carried out in Asembo, a rural community where high rates of child stunting exist. PARTICIPANTS: A total of 250 female primary caregivers of children under 5 years of age and thirteen experts in farming and food management participated. RESULTS: Study results showed that from a young age, children routinely ate maize-based dishes. Economic constraints and changing environmental patterns guided the application of sub-optimal crop practices involving early harvest, poor drying, mixing spoiled with good cereals and storing cereals in polypropylene bags in confined quarters occupied by humans and livestock and raising risks of aflatoxin contamination. Most (80 %) smallholder farmers were unaware of aflatoxins and their harmful economic and health consequences. CONCLUSIONS: Young children living in subsistence farming households may be at risk of exposure to aflatoxins and consequent ill health and stunting. Sustained efforts to increase awareness of the risks of aflatoxins and control measures among subsistence farmers could help to mitigate practices that raise exposure.


Subject(s)
Aflatoxins , Child , Humans , Female , Child, Preschool , Food Contamination/analysis , Cross-Sectional Studies , Kenya , Caregivers , Health Knowledge, Attitudes, Practice , Edible Grain/chemistry , Growth Disorders
12.
PLoS One ; 18(1): e0277657, 2023.
Article in English | MEDLINE | ID: mdl-36696882

ABSTRACT

BACKGROUND: Accurate and timely diagnosis is essential in limiting the spread of SARS-CoV-2 infection. The reference standard, rRT-PCR, requires specialized laboratories, costly reagents, and a long turnaround time. Antigen RDTs provide a feasible alternative to rRT-PCR since they are quick, relatively inexpensive, and do not require a laboratory. The WHO requires that Ag RDTs have a sensitivity ≥80% and specificity ≥97%. METHODS: This evaluation was conducted at 11 health facilities in Kenya between March and July 2021. We enrolled persons of any age with respiratory symptoms and asymptomatic contacts of confirmed COVID-19 cases. We collected demographic and clinical information and two nasopharyngeal specimens from each participant for Ag RDT testing and rRT-PCR. We calculated the diagnostic performance of the Panbio™ Ag RDT against the US Centers for Disease Control and Prevention's (CDC) rRT-PCR test. RESULTS: We evaluated the Ag RDT in 2,245 individuals where 551 (24.5%, 95% CI: 22.8-26.3%) tested positive by rRT-PCR. Overall sensitivity of the Ag RDT was 46.6% (95% CI: 42.4-50.9%), specificity 98.5% (95% CI: 97.8-99.0%), PPV 90.8% (95% CI: 86.8-93.9%) and NPV 85.0% (95% CI: 83.4-86.6%). Among symptomatic individuals, sensitivity was 60.6% (95% CI: 54.3-66.7%) and specificity was 98.1% (95% CI: 96.7-99.0%). Among asymptomatic individuals, sensitivity was 34.7% (95% CI 29.3-40.4%) and specificity was 98.7% (95% CI: 97.8-99.3%). In persons with onset of symptoms <5 days (594/876, 67.8%), sensitivity was 67.1% (95% CI: 59.2-74.3%), and 53.3% (95% CI: 40.0-66.3%) among those with onset of symptoms >7 days (157/876, 17.9%). The highest sensitivity was 87.0% (95% CI: 80.9-91.8%) in symptomatic individuals with cycle threshold (Ct) values ≤30. CONCLUSION: The overall sensitivity and NPV of the Panbio™ Ag RDT were much lower than expected. The specificity of the Ag RDT was high and satisfactory; therefore, a positive result may not require confirmation by rRT-PCR. The kit may be useful as a rapid screening tool only for symptomatic patients in high-risk settings with limited access to rRT-PCR. A negative result should be interpreted based on clinical and epidemiological information and may require retesting by rRT-PCR.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antigens, Viral , COVID-19/diagnosis , COVID-19 Testing , Health Facilities , Kenya/epidemiology , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
13.
Emerg Infect Dis ; 28(13): S159-S167, 2022 12.
Article in English | MEDLINE | ID: mdl-36502403

ABSTRACT

Kenya's Ministry of Health (MOH) and the US Centers for Disease Control and Prevention in Kenya (CDC Kenya) have maintained a 40-year partnership during which measures were implemented to prevent, detect, and respond to disease threats. During the COVID-19 pandemic, the MOH and CDC Kenya rapidly responded to mitigate disease impact on Kenya's 52 million residents. We describe activities undertaken jointly by the MOH and CDC Kenya that lessened the effects of COVID-19 during 5 epidemic waves from March through December 2021. Activities included establishing national and county-level emergency operations centers and implementing workforce development and deployment, infection prevention and control training, laboratory diagnostic advancement, enhanced surveillance, and information management. The COVID-19 pandemic provided fresh impetus for the government of Kenya to establish a national public health institute, launched in January 2022, to consolidate its public health activities and counter COVID-19 and future infectious, vaccine-preventable, and emerging zoonotic diseases.


Subject(s)
COVID-19 , Public Health , Animals , United States , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Centers for Disease Control and Prevention, U.S. , Zoonoses/prevention & control
14.
Emerg Infect Dis ; 28(13): S34-S41, 2022 12.
Article in English | MEDLINE | ID: mdl-36502419

ABSTRACT

Existing acute febrile illness (AFI) surveillance systems can be leveraged to identify and characterize emerging pathogens, such as SARS-CoV-2, which causes COVID-19. The US Centers for Disease Control and Prevention collaborated with ministries of health and implementing partners in Belize, Ethiopia, Kenya, Liberia, and Peru to adapt AFI surveillance systems to generate COVID-19 response information. Staff at sentinel sites collected epidemiologic data from persons meeting AFI criteria and specimens for SARS-CoV-2 testing. A total of 5,501 patients with AFI were enrolled during March 2020-October 2021; >69% underwent SARS-CoV-2 testing. Percentage positivity for SARS-CoV-2 ranged from 4% (87/2,151, Kenya) to 19% (22/115, Ethiopia). We show SARS-CoV-2 testing was successfully integrated into AFI surveillance in 5 low- to middle-income countries to detect COVID-19 within AFI care-seeking populations. AFI surveillance systems can be used to build capacity to detect and respond to both emerging and endemic infectious disease threats.


Subject(s)
COVID-19 , Communicable Diseases , United States , Humans , COVID-19/epidemiology , SARS-CoV-2 , COVID-19 Testing , Fever/epidemiology
15.
BMC Med ; 20(1): 291, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100910

ABSTRACT

BACKGROUND: Zika virus (ZIKV), first discovered in Uganda in 1947, re-emerged globally in 2013 and was later associated with microcephaly and other birth defects. We determined the incidence of ZIKV infection and its association with adverse pregnancy and fetal outcomes in a pregnancy cohort in Kenya. METHODS: From October 2017 to July 2019, we recruited and followed up women aged ≥ 15 years and ≤ 28 weeks pregnant in three hospitals in coastal Mombasa. Monthly follow-up included risk factor questions and a blood sample collected for ZIKV serology. We collected anthropometric measures (including head circumference), cord blood, venous blood from newborns, and any evidence of birth defects. Microcephaly was defined as a head circumference (HC) < 2 standard deviations (SD) for sex and gestational age. Severe microcephaly was defined as HC < 3 SD for sex and age. We tested sera for anti-ZIKV IgM antibodies using capture enzyme-linked immunosorbent assay (ELISA) and confirmed positives using the plaque reduction neutralization test (PRNT90) for ZIKV and for dengue (DENV) on the samples that were ZIKV neutralizing antibody positive. We collected blood and urine from participants reporting fever or rash for ZIKV testing. RESULTS: Of 2889 pregnant women screened for eligibility, 2312 (80%) were enrolled. Of 1916 recorded deliveries, 1816 (94.6%) were live births and 100 (5.2%) were either stillbirths or spontaneous abortions (< 22 weeks of gestation). Among 1236 newborns with complete anthropometric measures, 11 (0.9%) had microcephaly and 3 (0.2%) had severe microcephaly. A total of 166 (7.2%) participants were positive for anti-ZIKV IgM, 136 of whom became seropositive during follow-up. Among the 166 anti-ZIKV IgM positive, 3 and 18 participants were further seropositive for ZIKV and DENV neutralizing antibodies, respectively. Of these 3 and 18 pregnant women, one and 13 (72.2%) seroconverted with antibodies to ZIKV and DENV, respectively. All 308 samples (serum and urine samples collected during sick visits and samples that were anti-ZIKV IgM positive) tested by RT-PCR were negative for ZIKV. No adverse pregnancy or neonatal outcomes were reported among the three participants with confirmed ZIKV exposure. Among newborns from pregnant women with DENV exposure, four (22.2%) were small for gestational age and one (5.6%) had microcephaly. CONCLUSIONS: The prevalence of severe microcephaly among newborns in coastal Kenya was high relative to published estimates from facility-based studies in Europe and Latin America, but little evidence of ZIKV transmission. There is a need for improved surveillance for microcephaly and other congenital malformations in Kenya.


Subject(s)
Microcephaly , Zika Virus Infection , Zika Virus , Antibodies, Viral , Female , Humans , Immunoglobulin M , Infant, Newborn , Kenya/epidemiology , Microcephaly/epidemiology , Pregnancy , Prevalence , Zika Virus Infection/complications , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
16.
Viruses ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: mdl-36016365

ABSTRACT

The majority of Kenya's > 3 million camels have antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV), although human infection in Africa is rare. We enrolled 243 camels aged 0−24 months from 33 homesteads in Northern Kenya and followed them between April 2018 to March 2020. We collected and tested camel nasal swabs for MERS-CoV RNA by RT-PCR followed by virus isolation and whole genome sequencing of positive samples. We also documented illnesses (respiratory or other) among the camels. Human camel handlers were also swabbed, screened for respiratory signs, and samples were tested for MERS-CoV by RT-PCR. We recorded 68 illnesses among 58 camels, of which 76.5% (52/68) were respiratory signs and the majority of illnesses (73.5% or 50/68) were recorded in 2019. Overall, 124/4692 (2.6%) camel swabs collected from 83 (34.2%) calves in 15 (45.5%) homesteads between April−September 2019 screened positive, while 22 calves (26.5%) recorded reinfections (second positive swab following ≥ 2 consecutive negative tests). Sequencing revealed a distinct Clade C2 virus that lacked the signature ORF4b deletions of other Clade C viruses. Three previously reported human PCR positive cases clustered with the camel infections in time and place, strongly suggesting sporadic transmission to humans during intense camel outbreaks in Northern Kenya.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Antibodies, Viral , Camelus , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Disease Outbreaks , Humans , Kenya/epidemiology , Zoonoses
17.
PLOS Glob Public Health ; 2(9): e0000951, 2022.
Article in English | MEDLINE | ID: mdl-36962806

ABSTRACT

We investigated the first 152 laboratory-confirmed SARS-CoV-2 cases (125 primary and 27 secondary) and their 248 close contacts in Kisumu County, Kenya. Conducted June 10-October 8, 2020, this study included interviews and sample collection at enrolment and 14-21 days later. Median age was 35 years (IQR 28-44); 69.0% reported COVID-19 related symptoms, most commonly cough (60.0%), headache (55.2%), fever (53.3%) and loss of taste or smell (43.8%). One in five were hospitalized, 34.4% >25 years of age had at least one comorbidity, and all deaths had comorbidities. Adults ≥25 years with a comorbidity were 3.15 (95% CI 1.37-7.26) times more likely to have been hospitalized or died than participants without a comorbidity. Infectious comorbidities included HIV, tuberculosis, and malaria, but no current cases of influenza, respiratory syncytial virus, dengue fever, leptospirosis or chikungunya were identified. Thirteen (10.4%) of the 125 primary infections transmitted COVID-19 to 27 close contacts, 158 (63.7%) of whom resided or worked within the same household. Thirty-one percent (4 of 13) of those who transmitted COVID-19 to secondary cases were health care workers; no known secondary transmissions occurred between health care workers. This rapid assessment early in the course of the COVID-19 pandemic identified some context-specific characteristics which conflicted with the national line-listing of cases, and which have been substantiated in the year since. These included over two-thirds of cases reporting the development of symptoms during the two weeks after diagnosis, compared to the 7% of cases reported nationally; over half of cases reporting headaches, and nearly half of all cases reporting loss of taste and smell, none of which were reported at the time by the World Health Organization to be common symptoms. This study highlights the importance of rapid in-depth assessments of outbreaks in understanding the local epidemiology and response measures required.

18.
PLoS One ; 16(9): e0244119, 2021.
Article in English | MEDLINE | ID: mdl-34478450

ABSTRACT

BACKGROUND: To improve early detection of emerging infectious diseases in sub-Saharan Africa (SSA), many of them zoonotic, numerous electronic animal disease-reporting systems have been piloted but not implemented because of cost, lack of user friendliness, and data insecurity. In Kenya, we developed and rolled out an open-source mobile phone-based domestic and wild animal disease reporting system and collected data over two years to investigate its robustness and ability to track disease trends. METHODS: The Kenya Animal Biosurveillance System (KABS) application was built on the Java® platform, freely downloadable for android compatible mobile phones, and supported by web-based account management, form editing and data monitoring. The application was integrated into the surveillance systems of Kenya's domestic and wild animal sectors by adopting their existing data collection tools, and targeting disease syndromes prioritized by national, regional and international animal and human health agencies. Smartphone-owning government and private domestic and wild animal health officers were recruited and trained on the application, and reports received and analyzed by Kenya Directorate of Veterinary Services. The KABS application performed automatic basic analyses (frequencies, spatial distribution), which were immediately relayed to reporting officers as feedback. RESULTS: Of 697 trained domestic animal officers, 662 (95%) downloaded the application, and >72% of them started reporting using the application within three months. Introduction of the application resulted in 2- to 14-fold increase in number of disease reports when compared to the previous year (relative risk = 14, CI 13.8-14.2, p<0.001), and reports were more widely distributed. Among domestic animals, food animals (cattle, sheep, goats, camels, and chicken) accounted for >90% of the reports, with respiratory, gastrointestinal and skin diseases constituting >85% of the reports. Herbivore wildlife (zebra, buffalo, elephant, giraffe, antelopes) accounted for >60% of the wildlife disease reports, followed by carnivores (lions, cheetah, hyenas, jackals, and wild dogs). Deaths, traumatic injuries, and skin diseases were most reported in wildlife. CONCLUSIONS: This open-source system was user friendly and secure, ideal for rolling out in other countries in SSA to improve disease reporting and enhance preparedness for epidemics of zoonotic diseases.


Subject(s)
Animal Diseases , Animals , Cattle , Kenya , Livestock , Sentinel Surveillance , Sheep
20.
BMC Infect Dis ; 21(1): 191, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602160

ABSTRACT

BACKGROUND: Developing disease risk maps for priority endemic and episodic diseases is becoming increasingly important for more effective disease management, particularly in resource limited countries. For endemic and easily diagnosed diseases such as anthrax, using historical data to identify hotspots and start to define ecological risk factors of its occurrence is a plausible approach. Using 666 livestock anthrax events reported in Kenya over 60 years (1957-2017), we determined the temporal and spatial patterns of the disease as a step towards identifying and characterizing anthrax hotspots in the region. METHODS: Data were initially aggregated by administrative unit and later analyzed by agro-ecological zones (AEZ) to reveal anthrax spatio-temporal trends and patterns. Variations in the occurrence of anthrax events were estimated by fitting Poisson generalized linear mixed-effects models to the data with AEZs and calendar months as fixed effects and sub-counties as random effects. RESULTS: The country reported approximately 10 anthrax events annually, with the number increasing to as many as 50 annually by the year 2005. Spatial classification of the events in eight counties that reported the highest numbers revealed spatial clustering in certain administrative sub-counties, with 12% of the sub-counties responsible for over 30% of anthrax events, whereas 36% did not report any anthrax disease over the 60-year period. When segregated by AEZs, there was significantly greater risk of anthrax disease occurring in agro-alpine, high, and medium potential AEZs when compared to the agriculturally low potential arid and semi-arid AEZs of the country (p < 0.05). Interestingly, cattle were > 10 times more likely to be infected by B. anthracis than sheep, goats, or camels. There was lower risk of anthrax events in August (P = 0.034) and December (P = 0.061), months that follow long and short rain periods, respectively. CONCLUSION: Taken together, these findings suggest existence of certain geographic, ecological, and demographic risk factors that promote B. anthracis persistence and trasmission in the disease hotspots.


Subject(s)
Anthrax/epidemiology , Anthrax/veterinary , Livestock , Agriculture , Animals , Bacillus anthracis/isolation & purification , Cluster Analysis , Kenya/epidemiology , Livestock/microbiology , Rain , Risk Factors , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL