Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Front Mol Neurosci ; 17: 1268013, 2024.
Article En | MEDLINE | ID: mdl-38650658

The human PLAA gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic PLAA variants were reported with progressive neurodegeneration, consequences of monoallelic PLAA variants have not been elucidated. Using exome or genome sequencing we identified PLAA de-novo missense variants, affecting conserved residues within the PUL domain, in children affected with neurodevelopmental disorders (NDDs), including psychomotor regression, intellectual disability (ID) and autism spectrum disorders (ASDs). Computational and in-vitro studies of the identified variants revealed abnormal chain arrangements at C-terminal and reduced PLAA-p97/VCP interaction, respectively. These findings expand both allelic and phenotypic heterogeneity associated to PLAA-related neurological disorders, highlighting perturbed vesicle recycling as a potential disease mechanism in NDDs due to genetic defects of PLAA.

2.
Stem Cell Res ; 76: 103333, 2024 Apr.
Article En | MEDLINE | ID: mdl-38350246

ZEB2 is a protein-coding gene belonging to a very restricted family of transcription factors. ZEB2 acts mainly as a transcription repressor, is expressed in various tissues and its role is fundamental for the correct development of the nervous system. The best-known clinical picture associated with ZEB2 mutations is Mowat-Wilson syndrome, caused mostly by haploinsufficiency and characterized by possible multi-organ malformations, dysmorphic features, intellectual disability, and epilepsy. In this study we report the generation of IGGi004-A and IGGi005-A, iPSC clones from two patients carrying different heterozygous mutations in ZEB2, which can be used for disease modelling, pathophysiological studies and therapeutics testing.


Facies , Hirschsprung Disease , Induced Pluripotent Stem Cells , Intellectual Disability , Microcephaly , Humans , Intellectual Disability/complications , Zinc Finger E-box Binding Homeobox 2/genetics , Mutation/genetics , Transcription Factors/genetics , Homeodomain Proteins/genetics
3.
Am J Hum Genet ; 111(3): 529-543, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38387458

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Brain/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Lipids , Intellectual Disability/genetics , Intellectual Disability/metabolism , rab GTP-Binding Proteins/metabolism
4.
Stem Cell Res ; 72: 103232, 2023 10.
Article En | MEDLINE | ID: mdl-37865062

Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel defective in cystic fibrosis (CF). Several CFTR mutations are causative of CF, among which G542X is a nonsense mutation introducing a premature stop codon which prevents CFTR protein synthesis. We generated a new iPSC line from nasal cells carrying G542X homozygous mutation for CFTR: IGGi002A. This cell line has normal female karyotype, express pluripotency markers and could differentiate into three germ layers in vitro. This iPSC line may be used for disease modeling (cell differentiation and organoid formation) and development of personalized treatments by genome editing or pharmacological screening.


Cystic Fibrosis , Induced Pluripotent Stem Cells , Humans , Female , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Codon, Nonsense
5.
Cells ; 12(15)2023 07 27.
Article En | MEDLINE | ID: mdl-37566031

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons (MNs). Astrocytes display a toxic phenotype in ALS, which results in MN damage. Glutamate (Glu)-mediated excitotoxicity and group I metabotropic glutamate receptors (mGluRs) play a pathological role in the disease progression. We previously demonstrated that in vivo genetic ablation or pharmacological modulation of mGluR5 reduced astrocyte activation and MN death, prolonged survival and ameliorated the clinical progression in the SOD1G93A mouse model of ALS. This study aimed to investigate in vitro the effects of mGluR5 downregulation on the reactive spinal cord astrocytes cultured from adult late symptomatic SOD1G93A mice. We observed that mGluR5 downregulation in SOD1G93A astrocytes diminished the cytosolic Ca2+ overload under resting conditions and after mGluR5 simulation and reduced the expression of the reactive glial markers GFAP, S100ß and vimentin. In vitro exposure to an anti-mGluR5 antisense oligonucleotide or to the negative allosteric modulator CTEP also ameliorated the altered reactive astrocyte phenotype. Downregulating mGluR5 in SOD1G93A mice reduced the synthesis and release of the pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α and ameliorated the cellular bioenergetic profile by improving the diminished oxygen consumption and ATP synthesis and by lowering the excessive lactate dehydrogenase activity. Most relevantly, mGluR5 downregulation hampered the neurotoxicity of SOD1G93A astrocytes co-cultured with spinal cord MNs. We conclude that selective reduction in mGluR5 expression in SOD1G93A astrocytes positively modulates the astrocyte reactive phenotype and neurotoxicity towards MNs, further supporting mGluR5 as a promising therapeutic target in ALS.


Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Receptor, Metabotropic Glutamate 5 , Animals , Mice , Amyotrophic Lateral Sclerosis/metabolism , Astrocytes/metabolism , Down-Regulation/genetics , Glutamic Acid/metabolism , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Receptor, Metabotropic Glutamate 5/genetics
6.
Sci Rep ; 13(1): 7604, 2023 05 10.
Article En | MEDLINE | ID: mdl-37165082

F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF.


Cystic Fibrosis , Quinolines , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Chloride Channels/genetics , Quinolines/therapeutic use , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Mutation
7.
Cerebellum ; 22(2): 206-222, 2023 Apr.
Article En | MEDLINE | ID: mdl-35218524

Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.


Brain , Nervous System Malformations , Animals , Female , Humans , Mice , Cerebellum/abnormalities , Neurons
8.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article En | MEDLINE | ID: mdl-36142455

Human-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches. In this work, we focused on the optimization of a reproducible protocol in feeder-free conditions able to generate functional glutamatergic neurons. This protocol is based on a generation of neuroprecursor cells differentiated into human neurons with the administration in the culture medium of specific neurotrophins in a Geltrex-coated substrate. We confirmed the efficiency of this protocol through molecular analysis (upregulation of neuronal markers and neurotransmitter receptors assessed by gene expression profiling and expression of the neuronal markers at the protein level), morphological analysis, and immunfluorescence detection of pre-synaptic and post-synaptic markers at synaptic boutons. The hiPSC-derived neurons acquired Ca2+-dependent glutamate release properties as a hallmark of neuronal maturation. In conclusion, our study describes a new methodological approach to achieve feeder-free neuronal differentiation from hiPSC and adds a new tool for functional characterization of hiPSC-derived neurons.


Glutamic Acid , Induced Pluripotent Stem Cells , Animals , Cell Differentiation/genetics , Glutamic Acid/metabolism , Humans , Nerve Growth Factors/metabolism , Neurons/metabolism , Receptors, Neurotransmitter/metabolism
9.
Orphanet J Rare Dis ; 17(1): 286, 2022 07 19.
Article En | MEDLINE | ID: mdl-35854306

BACKGROUND: Pathogenic variants in PEX-genes can affect peroxisome assembly and function and cause Zellweger spectrum disorders (ZSDs), characterized by variable phenotypes in terms of disease severity, age of onset and clinical presentations. So far, defects in at least 15 PEX-genes have been implicated in Mendelian diseases, but in some of the ultra-rare ZSD subtypes genotype-phenotype correlations and disease mechanisms remain elusive. METHODS: We report five families carrying biallelic variants in PEX13. The identified variants were initially evaluated by using a combination of computational approaches. Immunofluorescence and complementation studies on patient-derived fibroblasts were performed in two patients to investigate the cellular impact of the identified mutations. RESULTS: Three out of five families carried a recurrent p.Arg294Trp non-synonymous variant. Individuals affected with PEX13-related ZSD presented heterogeneous clinical features, including hypotonia, developmental regression, hearing/vision impairment, progressive spasticity and brain leukodystrophy. Computational predictions highlighted the involvement of the Arg294 residue in PEX13 homodimerization, and the analysis of blind docking predicted that the p.Arg294Trp variant alters the formation of dimers, impairing the stability of the PEX13/PEX14 translocation module. Studies on muscle tissues and patient-derived fibroblasts revealed biochemical alterations of mitochondrial function and identified mislocalized mitochondria and a reduced number of peroxisomes with abnormal PEX13 concentration. CONCLUSIONS: This study expands the phenotypic and mutational spectrum of PEX13-related ZSDs and also highlight a variety of disease mechanisms contributing to PEX13-related clinical phenotypes, including the emerging contribution of secondary mitochondrial dysfunction to the pathophysiology of ZSDs.


Zellweger Syndrome , Genetic Association Studies , Humans , Membrane Proteins/genetics , Mutation/genetics , Peroxisomes/genetics , Peroxisomes/pathology , Zellweger Syndrome/genetics , Zellweger Syndrome/pathology
10.
Physiol Genomics ; 54(7): 273-282, 2022 07 01.
Article En | MEDLINE | ID: mdl-35658672

Ion channels are potentially exploitable as pharmacological targets to treat asthma. This study evaluated the role of KCa3.1 channels, encoded by Kcnn4, in regulating the gene expression of mouse airway epithelium and the development of asthma traits. We used the ovalbumin (OVA) challenge as an asthma model in wild-type and Kcnn4-/- mice, performed histological analysis, and measured serum IgE to evaluate asthma traits. We analyzed gene expression of isolated epithelial cells of trachea or bronchi using mRNA sequencing and gene ontology and performed Ussing chamber experiments in mouse trachea to evaluate anion secretion. Gene expression of epithelial cells from mouse airways differed between trachea and bronchi, indicating regional differences in the inflammatory and transepithelial transport properties of proximal and distal airways. We found that Kcnn4 silencing reduced mast cell numbers, mucus, and collagen in the airways, and reduced the amount of epithelial anion secretion in the OVA-challenged animals. In addition, gene expression was differentially modified in the trachea and bronchi, with Kcnn4 genetic silencing significantly altering the expression of genes involved in the TNF pathway, supporting the potential of KCa3.1 as a therapeutic target for asthma.


Asthma , Trachea , Animals , Asthma/genetics , Asthma/metabolism , Asthma/pathology , Bronchi/metabolism , Disease Models, Animal , Gene Expression , Mice , Mice, Inbred BALB C , Ovalbumin/metabolism , Trachea/metabolism , Trachea/pathology
11.
Front Pediatr ; 10: 847549, 2022.
Article En | MEDLINE | ID: mdl-35573960

Background: WOREE syndrome is a rare neurodevelopmental disorder featuring drug-resistant epilepsy and global developmental delay. The disease, caused by biallelic pathogenic variants in the WWOX gene, usually leads to severe disability or death within the first years of life. Clinicians have become more confident with the phenotypic picture of WOREE syndrome, allowing earlier clinical diagnosis. We report a boy with a peculiar clinic-radiological pattern supporting the diagnosis of WOREE syndrome. Methods: DNA was extracted from blood samples of the proband and his parents and subjected to Exome Sequencing (ES). Agarose gel electrophoresis, real-time quantitative PCR (Q-PCR), and array-CGH 180K were also performed. Results: ES detected a pathogenic stop variant (c.790C > T, p.Arg264*) in one allele of WWOX in the proband and his unaffected mother. A 180K array-CGH analysis revealed a 84,828-bp (g.chr16:78,360,803-78,445,630) deletion encompassing exon 6. The Q-PCR product showed that the proband and his father harbored the same deleted fragment, fusing exons 5 and 7 of WWOX. Conclusions: Genetic testing remains crucial in establishing the definitive diagnosis of WOREE syndrome and allows prenatal interventions/parental counseling. However, our findings suggest that targeted Next Generation Sequencing-based testing may occasionally show technical pitfalls, prompting further genetic investigation in selected cases with high clinical suspicion.

12.
Int J Mol Sci ; 22(21)2021 Nov 04.
Article En | MEDLINE | ID: mdl-34769402

Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.


Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Codon, Nonsense , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Nonsense Mediated mRNA Decay/drug effects , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Bronchi/drug effects , Chloride Channel Agonists/pharmacology , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Epithelial Cells/drug effects , Humans
13.
Int J Mol Sci ; 22(10)2021 May 17.
Article En | MEDLINE | ID: mdl-34067708

Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60-70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.


Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Aminophenols/pharmacology , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Bronchi/drug effects , Bronchi/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Epithelial Cells/metabolism , Humans , Indoles/pharmacology , Protein Folding/drug effects , Pyrazoles/metabolism , Pyridines/metabolism , Pyrrolidines/metabolism , Quinolines/pharmacology
14.
Front Cell Dev Biol ; 8: 590119, 2020.
Article En | MEDLINE | ID: mdl-33154971

Neurodevelopmental disorders (NDDs) are a group of disorders in which the development of the central nervous system (CNS) is disturbed, resulting in different neurological and neuropsychiatric features, such as impaired motor function, learning, language or non-verbal communication. Frequent comorbidities include epilepsy and movement disorders. Advances in DNA sequencing technologies revealed identifiable genetic causes in an increasingly large proportion of NDDs, highlighting the need of experimental approaches to investigate the defective genes and the molecular pathways implicated in abnormal brain development. However, targeted approaches to investigate specific molecular defects and their implications in human brain dysfunction are prevented by limited access to patient-derived brain tissues. In this context, advances of both stem cell technologies and genome editing strategies during the last decade led to the generation of three-dimensional (3D) in vitro-models of cerebral organoids, holding the potential to recapitulate precise stages of human brain development with the aim of personalized diagnostic and therapeutic approaches. Recent progresses allowed to generate 3D-structures of both neuronal and non-neuronal cell types and develop either whole-brain or region-specific cerebral organoids in order to investigate in vitro key brain developmental processes, such as neuronal cell morphogenesis, migration and connectivity. In this review, we summarized emerging methodological approaches in the field of brain organoid technologies and their application to dissect disease mechanisms underlying an array of pediatric brain developmental disorders, with a particular focus on autism spectrum disorders (ASDs) and epileptic encephalopathies.

15.
Cells ; 9(9)2020 09 13.
Article En | MEDLINE | ID: mdl-32933106

The airway epithelium contains ionocytes, a rare cell type with high expression of Forkhead Box I1 (FOXI1) transcription factor and Cystic Fibrosis Transmembrane conductance Regulator (CFTR), a chloride channel that is defective in cystic fibrosis (CF). Our aim was to verify if ionocyte development is altered in CF and to investigate the relationship between ionocytes and CFTR-dependent chloride secretion. We collected nasal cells by brushing to determine ionocyte abundance. Nasal and bronchial cells were also expanded in vitro and reprogrammed to differentiated epithelia for morphological and functional studies. We found a relatively high (~3%) ionocyte abundance in ex vivo nasal samples, with no difference between CF and control individuals. In bronchi, ionocytes instead appeared very rarely as previously reported, thus suggesting a possible proximal-distal gradient in human airways. The difference between nasal and bronchial epithelial cells was maintained in culture, which suggests an epigenetic control of ionocyte development. In the differentiation phase of the culture procedure, we used two media that resulted in a different pattern of CFTR expression: confined to ionocytes or more broadly expressed. CFTR function was similar in both conditions, thus indicating that chloride secretion equally occurs irrespective of CFTR expression pattern.


Bronchi/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Epithelial Cells/metabolism , Forkhead Transcription Factors/metabolism , Nasal Mucosa/metabolism , Case-Control Studies , Cell Culture Techniques/methods , Cell Differentiation/genetics , Cell Line , Culture Media , Cystic Fibrosis/pathology , Forkhead Transcription Factors/genetics , Humans , Transcriptome , Transfection
16.
Biomedicines ; 8(9)2020 Sep 05.
Article En | MEDLINE | ID: mdl-32899500

Episodic ataxia type 2 (EA2) is an autosomal dominant neurological disorder characterized by paroxysmal attacks of ataxia, vertigo, and nausea that usually last hours to days. It is caused by loss-of-function mutations in CACNA1A, the gene encoding the pore-forming α1 subunit of P/Q-type voltage-gated Ca2+ channels. Although pharmacological treatments, such as acetazolamide and 4-aminopyridine, exist for EA2, they do not reduce or control the symptoms in all patients. CACNA1A is heavily spliced and some of the identified EA2 mutations are predicted to disrupt selective isoforms of this gene. Modulating splicing of CACNA1A may therefore represent a promising new strategy to develop improved EA2 therapies. Because RNA splicing is dysregulated in many other genetic diseases, several tools, such as antisense oligonucleotides, trans-splicing, and CRISPR-based strategies, have been developed for medical purposes. Here, we review splicing-based strategies used for genetic disorders, including those for Duchenne muscular dystrophy, spinal muscular dystrophy, and frontotemporal dementia with Parkinsonism linked to chromosome 17, and discuss their potential applicability to EA2.

17.
Eur J Med Chem ; 180: 283-290, 2019 Oct 15.
Article En | MEDLINE | ID: mdl-31319264

Multi-target molecular entities, offer a path to progress both in understanding causes of disease and in defining effective small molecule treatments. Coumarin and its derivatives belong to an important group of natural compounds with diverse biological properties. They are found in vegetables and plants for which literature reports thousands of publications for the great variety of biological applications among which the photoprotective effects, thus being considered multi-targeting agents. Their furan condensed analogues constitute the family of furocoumarins, less represented in the literature, endowed with photosensitizing properties and often used for the treatment of skin diseases such as vitiligo and psoriasis. Despite the study of biological properties of linear and angular furocumarins dates back to ancient times, mainly as photosensitizers, these small molecules still represent an attractive scaffold for further development and applications in several therapeutic fields. The aim of the present review is to summarize the most promising chemical entities belonging to the class of furocumarins and coumarins, emerged in the last decades, and the methods used for their synthesis with a particular focus on main targets involved in the cystic fibrosis treatment.


Coumarins/therapeutic use , Cystic Fibrosis/drug therapy , Coumarins/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship
18.
Hum Mutat ; 40(6): 742-748, 2019 06.
Article En | MEDLINE | ID: mdl-30851139

Pharmacological rescue of mutant cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis (CF) depends on the specific defect caused by different mutation classes. We asked whether a patient with the rare p.Gly970Asp (c.2909G>A) mutation could benefit from CFTR pharmacotherapy since a similar missense mutant p.Gly970Arg (c.2908G>C) was previously found to be sensitive to potentiators in vitro but not in vivo. By complementary DNA transfection, we found that both mutations are associated with defective CFTR function amenable to pharmacological treatment. However, analysis of messenger RNA (mRNA) from patient's cells revealed that c.2908G>C impairs RNA splicing whereas c.2909G>A does not perturb splicing and leads to the expected p.Gly970Asp mutation. In agreement with these results, nasal epithelial cells from the p.Gly970Asp patient showed significant improvement of CFTR function upon pharmacological treatment. Our results underline the importance of controlling the effect of CF mutation at the mRNA level to determine if the pharmacotherapy of CFTR basic defect is appropriate.


Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Point Mutation , Codon , Cystic Fibrosis/metabolism , HEK293 Cells , Humans , Phenotype , RNA Splicing , Transfection
19.
Exp Physiol ; 104(6): 866-875, 2019 06.
Article En | MEDLINE | ID: mdl-30924990

NEW FINDINGS: What is the central question of this study? What is the precise subcellular localization of the epithelial sodium channel (ENaC) in human airway epithelium? What is the main finding and its importance? ENaC protein has an unexpected localization in the peripheral region of the apical membrane of bronchial epithelial cells, very close to tight junctions. This may be important for the mechanism of Na+ absorption ABSTRACT: The epithelial sodium channel (ENaC) has a key role in absorbing fluid across the human airway epithelium. Altered activity of ENaC may perturb the process of mucociliary clearance, thus impairing the innate defence mechanisms against microbial agents. The proteins forming ENaC are present on the apical membrane of the epithelium. However, their precise localization is unknown. In the present study, we used two antibodies recognizing the α and ß ENaC subunits. Both antibodies revealed a restricted localization of ENaC in the peripheral region of the apical membrane of cultured bronchial epithelial cells, close to but not overlapping with tight junctions. In contrast, the cystic fibrosis transmembrane conductance regulator chloride channel was more diffusely expressed on the whole apical membrane. Modulation of ENaC activity by aprotinin or elastase resulted in a decrease or increase in the peripheral localization, respectively. Our results suggest that sodium absorption is mainly occurring close to tight junctions where this cation may be rapidly expelled by the Na+ /K+ pump present in lateral membranes. This arrangement of channels and pumps may limit Na+ build-up in other regions of the cells.


Bronchi/metabolism , Epithelial Cells/metabolism , Epithelial Sodium Channels/metabolism , Respiratory Mucosa/metabolism , Animals , Bronchi/cytology , Cell Line , Cell Membrane/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/cytology , Humans , Rats
20.
JCI Insight ; 3(20)2018 10 18.
Article En | MEDLINE | ID: mdl-30333310

Proton secretion mediated by ATP12A protein on the surface of the airway epithelium may contribute to cystic fibrosis (CF) lung disease by favoring bacterial infection and airway obstruction. We studied ATP12A in fresh bronchial samples and in cultured epithelial cells. In vivo, ATP12A expression was found almost exclusively at the apical side of nonciliated cells of airway epithelium and in submucosal glands, with much higher expression in CF samples. This could be due to bacterial infection and inflammation, since treating cultured cells with bacterial supernatants or with IL-4 (a cytokine that induces goblet cell hyperplasia) increased the expression of ATP12A in nonciliated cells. This observation was associated with upregulation and translocation of ATP1B1 protein from the basal to apical epithelial side, where it colocalizes with ATP12A. ATP12A function was evaluated by measuring the pH of the apical fluid in cultured epithelia. Under resting conditions, CF epithelia showed more acidic values. This abnormality was minimized by inhibiting ATP12A with ouabain. Following treatment with IL-4, ATP12A function was markedly increased, as indicated by strong acidification occurring under bicarbonate-free conditions. Our study reveals potentially novel aspects of ATP12A and remarks its importance as a possible therapeutic target in CF and other respiratory diseases.


Bronchi/pathology , Cystic Fibrosis/pathology , Goblet Cells/pathology , H(+)-K(+)-Exchanging ATPase/metabolism , Animals , Bronchi/cytology , Bronchi/immunology , Cell Membrane/metabolism , Cells, Cultured , Colon/cytology , Colon/metabolism , Cystic Fibrosis/immunology , Cystic Fibrosis/surgery , Goblet Cells/immunology , Goblet Cells/metabolism , H(+)-K(+)-Exchanging ATPase/genetics , Humans , Hydrogen-Ion Concentration , Interleukin-4/immunology , Interleukin-4/metabolism , Mice , Mice, Knockout , Ouabain/pharmacology , Permeability , Potassium/metabolism , Primary Cell Culture , Proton Pump Inhibitors/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism
...