Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pan Afr Med J ; 40: 200, 2021.
Article in English | MEDLINE | ID: mdl-35096227

ABSTRACT

INTRODUCTION: the use of digital health technologies and geographical information systems (GIS) in the conduct of immunization campaigns had proven to be a success story, and is gaining acceptance towards improving supervision, accountability, and real-time access to quality information. The demand for real-time information by policymakers and stakeholders in the polio eradication programme is increasing towards ensuring a world free from all polioviruses. This study aims to develop a tool that monitor and evaluate the circulating vaccine-derived poliovirus (cVDPV) campaign processes in real-time using open data kits (ODK) to collect data, analyze and visualize using an interactive dashboard in Power BI, towards improving timeliness and completeness of data reporting and providing real-time quality information to stakeholders. METHODS: electronic checklists were developed using open data kits (ODK) and uploaded onto android-based smartphones for data collection during a round of cVDPV outbreak response immunization. Supervisors were deployed to the field and the checklists were utilized at both stages of the campaign activities. A Power BI data visualization tool was used for reporting, analysis, and monitoring the activities of the campaign. RESULTS: an interactive dashboard was developed, providing real-time information that supports stakeholders during the campaign processes with improved timeliness and completeness of data reporting. The usage of the tool during the campaign enhanced close supervision, and increased transparency in data availability and accessibility by all partners. CONCLUSION: the study had shown that real-time information has significantly improved the smooth conduct of the immunization campaign processes through identifying gaps, and challenges in the field and can be utilized in similar resource settings including complex and humanitarian. It has demonstrated the capability of mobile phones using ODK for data collection and linked to a Power BI dashboard for enhanced supervision and transparency, and we encourage further studies to assess the effects of the tools on the campaign results.


Subject(s)
Poliovirus , Vaccines , Disease Outbreaks/prevention & control , Immunization , South Sudan
2.
PLoS One ; 11(9): e0163065, 2016.
Article in English | MEDLINE | ID: mdl-27668435

ABSTRACT

The polio eradication programme in Nigeria has been successful in reducing incidence to just six confirmed cases in 2014 and zero to date in 2015, but prediction and management of future outbreaks remains a concern. A Poisson mixed effects model was used to describe poliovirus spread between January 2001 and November 2013, incorporating the strength of connectivity between districts (local government areas, LGAs) as estimated by three models of human mobility: simple distance, gravity and radiation models. Potential explanatory variables associated with the case numbers in each LGA were investigated and the model fit was tested by simulation. Spatial connectivity, the number of non-immune children under five years old, and season were associated with the incidence of poliomyelitis in an LGA (all P < 0.001). The best-fitting spatial model was the radiation model, outperforming the simple distance and gravity models (likelihood ratio test P < 0.05), under which the number of people estimated to move from an infected LGA to an uninfected LGA was strongly associated with the incidence of poliomyelitis in that LGA. We inferred transmission networks between LGAs based on this model and found these to be highly local, largely restricted to neighbouring LGAs (e.g. 67.7% of secondary spread from Kano was expected to occur within 10 km). The remaining secondary spread occurred along routes of high population movement. Poliovirus transmission in Nigeria is predominantly localised, occurring between spatially contiguous areas. Outbreak response should be guided by knowledge of high-probability pathways to ensure vulnerable children are protected.

3.
J Infect Dis ; 210 Suppl 1: S102-10, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25316823

ABSTRACT

BACKGROUND: Historically, microplanning for polio vaccination campaigns in Nigeria relied on inaccurate and incomplete hand-drawn maps, resulting in the exclusion of entire settlements and missed children. The goal of this work was to create accurate, coordinate-based maps for 8 polio-endemic states in northern Nigeria to improve microplanning and support tracking of vaccination teams, thereby enhancing coverage, supervision, and accountability. METHODS: Settlement features were identified in the target states, using high-resolution satellite imagery. Field teams collected names and geocoordinates for each settlement feature, with the help of local guides. Global position system (GPS) tracking of vaccination teams was conducted in selected areas and daily feedback provided to supervisors. RESULTS: Geographic information system (GIS)-based maps were created for 2238 wards in the 8 target states. The resulting microplans included all settlements and more-efficient team assignments, owing to the improved spatial reference. GPS tracking was conducted in 111 high-risk local government areas, resulting in improved team performance and the identification of missed/poorly covered settlements. CONCLUSIONS: Accurate and complete maps are a necessary part of an effective polio microplan, and tracking vaccinators gives supervisors a tool to ensure that all settlements are visited.


Subject(s)
Geographic Information Systems , Poliomyelitis/prevention & control , Poliovirus Vaccines/administration & dosage , Vaccination , Humans , Nigeria/epidemiology , Poliomyelitis/epidemiology , Vaccination/statistics & numerical data
4.
Lancet Glob Health ; 2(2): e90-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-25104665

ABSTRACT

BACKGROUND: The completion of poliomyelitis eradication is a global emergency for public health. In 2012, more than 50% of the world's cases occurred in Nigeria following an unanticipated surge in incidence. We aimed to quantitatively analyse the key factors sustaining transmission of poliomyelitis in Nigeria and to calculate clinical efficacy estimates for the oral poliovirus vaccines (OPV) currently in use. METHODS: We used acute flaccid paralysis (AFP) surveillance data from Nigeria collected between January, 2001, and December, 2012, to estimate the clinical efficacies of all four OPVs in use and combined this with vaccination coverage to estimate the effect of the introduction of monovalent and bivalent OPV on vaccine-induced serotype-specific population immunity. Vaccine efficacy was determined using a case-control study with CIs based on bootstrap resampling. Vaccine efficacy was also estimated separately for north and south Nigeria, by age of the children, and by year. Detailed 60-day follow-up data were collected from children with confirmed poliomyelitis and were used to assess correlates of vaccine status. We also quantitatively assessed the epidemiology of poliomyelitis and programme performance and considered the reasons for the high vaccine refusal rate along with risk factors for a given local government area reporting a case. FINDINGS: Against serotype 1, both monovalent OPV (median 32.1%, 95% CI 26.1-38.1) and bivalent OPV (29.5%, 20.1-38.4) had higher clinical efficacy than trivalent OPV (19.4%, 16.1-22.8). Corresponding data for serotype 3 were 43.2% (23.1-61.1) and 23.8% (5.3-44.9) compared with 18.0% (14.1-22.1). Combined with increases in coverage, this factor has boosted population immunity in children younger than age 36 months to a record high (64-69% against serotypes 1 and 3). Vaccine efficacy in northern states was estimated to be significantly lower than in southern states (p≤0.05). The proportion of cases refusing vaccination decreased from 37-72% in 2008 to 21-51% in 2012 for routine and supplementary immunisation, and most caregivers cited ignorance of either vaccine importance or availability as the main reason for missing routine vaccinations (32.1% and 29.6% of cases, respectively). Multiple regression analyses highlighted associations between the age of the mother, availability of OPV at health facilities, and the primary source of health information and the probability of receiving OPV (all p<0.05). INTERPRETATION: Although high refusal rates, low OPV campaign awareness, and heterogeneous population immunity continued to support poliomyelitis transmission in Nigeria at the end of 2012, overall population immunity had improved due to new OPV formulations and improvements in programme delivery. FUNDING: Bill & Melinda Gates Foundation Vaccine Modeling Initiative, Royal Society.


Subject(s)
Attitude to Health , Poliomyelitis/epidemiology , Poliomyelitis/transmission , Poliovirus Vaccine, Oral/immunology , Case-Control Studies , Humans , Incidence , Nigeria/epidemiology , Poliomyelitis/immunology , Poliomyelitis/prevention & control , Poliovirus/immunology , Population Surveillance/methods , Retrospective Studies , Risk Factors , Treatment Outcome
5.
N Engl J Med ; 362(25): 2360-9, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20573924

ABSTRACT

BACKGROUND: The largest recorded outbreak of a circulating vaccine-derived poliovirus (cVDPV), detected in Nigeria, provides a unique opportunity to analyze the pathogenicity of the virus, the clinical severity of the disease, and the effectiveness of control measures for cVDPVs as compared with wild-type poliovirus (WPV). METHODS: We identified cases of acute flaccid paralysis associated with fecal excretion of type 2 cVDPV, type 1 WPV, or type 3 WPV reported in Nigeria through routine surveillance from January 1, 2005, through June 30, 2009. The clinical characteristics of these cases, the clinical attack rates for each virus, and the effectiveness of oral polio vaccines in preventing paralysis from each virus were compared. RESULTS: No significant differences were found in the clinical severity of paralysis among the 278 cases of type 2 cVDPV, the 2323 cases of type 1 WPV, and the 1059 cases of type 3 WPV. The estimated average annual clinical attack rates of type 1 WPV, type 2 cVDPV, and type 3 WPV per 100,000 susceptible children under 5 years of age were 6.8 (95% confidence interval [CI], 5.9 to 7.7), 2.7 (95% CI, 1.9 to 3.6), and 4.0 (95% CI, 3.4 to 4.7), respectively. The estimated effectiveness of trivalent oral polio vaccine against paralysis from type 2 cVDPV was 38% (95% CI, 15 to 54%) per dose, which was substantially higher than that against paralysis from type 1 WPV (13%; 95% CI, 8 to 18%), or type 3 WPV (20%; 95% CI, 12 to 26%). The more frequent use of serotype 1 and serotype 3 monovalent oral polio vaccines has resulted in improvements in vaccine-induced population immunity against these serotypes and in declines in immunity to type 2 cVDPV. CONCLUSIONS: The attack rate and severity of disease associated with the recent cVDPV identified in Nigeria are similar to those associated with WPV. International planning for the management of the risk of WPV, both before and after eradication, must include scenarios in which equally virulent and pathogenic cVDPVs could emerge.


Subject(s)
Poliomyelitis/etiology , Poliovirus Vaccine, Oral/adverse effects , Poliovirus/pathogenicity , Adolescent , Child , Child, Preschool , Humans , Infant , Nigeria/epidemiology , Paraplegia/epidemiology , Paraplegia/virology , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliomyelitis/virology , Poliovirus/immunology , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus Vaccine, Oral/immunology , Population Surveillance , Severity of Illness Index , Vaccination/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...