Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(34): 44575-44589, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39160767

ABSTRACT

To control three-dimensional (3D) cell spheroid formation, it is well-known the surface physicochemical and mechanical properties of cell culture materials are important; however, the formation and function of 3D cells are still unclear. This study demonstrated the precise control of the formation of 3D cells and 3D cell functions using diblock copolymers containing different ratios of a zwitterionic trimethylamine N-oxide group. The diblock copolymers were composed of poly(n-butyl methacrylate) (PBMA) as the hydrophobic unit for surface coating on a cell culture dish and stabilization in water, and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) as the precursor of N-oxide. The zwitterionic N-oxide converted from 0 to 100% using PDMAEMA. The wettability and surface zeta potential varied with different ratios of N-oxide diblock copolymer-coated surfaces, and the amount of protein adsorbed in the cell culture medium decreased monotonically with increasing N-oxide ratio. 3D cell spheroid formations were observed by seeding human umbilical cord mesenchymal stem cells (hUC-MSCs) in diblock copolymer-coated flat-bottom well plates, and the N-oxide ratio was over 40%. The cells proliferated in two-dimensions (2D) and did not form spheroids when the N-oxide ratio was less than 20%. Interestingly, the expression of undifferentiated markers of hUC-MSCs was higher on surfaces that adsorbed proteins to some extent and formed 50-150 µm spheroids in the range of 40-70% of N-oxide ratio. We revealed that a moderately protein-adsorbed surface allows precise control of spheroid formation and undifferentiated 3D cells and has potential applications for high-quality spheroids in regenerative medicine and drug screening.


Subject(s)
Acrylates , Cell Culture Techniques, Three Dimensional , Nylons , Polymers , Polymers/chemistry , Acrylamides/chemistry , Oxides/chemistry , Acrylates/chemistry , Ions/chemistry , Methacrylates/chemistry , Nylons/chemistry , Humans , Animals , Mice , Surface Properties , Chemical Phenomena , Cell Adhesion , Gene Expression , RNA, Messenger/genetics , Cell Culture Techniques, Three Dimensional/methods , Cells, Cultured , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism
2.
Macromol Biosci ; 23(5): e2200486, 2023 05.
Article in English | MEDLINE | ID: mdl-36880189

ABSTRACT

3D structured cells have great drug screening potential because they mimic in vivo tissues better than 2D cultured cells. In this study, multi-block copolymers composed of poly(2-methoxyethyl acrylate) (PMEA) and polyethylene glycol (PEG) are developed as a new kind of biocompatible polymers. PEG imparts non-cell adhesion while PMEA acts as an anchoring segment to prepare the polymer coating surface. The multi-block copolymers show higher stability in water than PMEA. A specific micro-sized swelling structure composed of a PEG chain is observed in the multi-block copolymer film in water. A single NIH3T3-3-4 spheroid is formed in 3 h on the surface of the multi-block copolymers with 8.4 wt% PEG. However, at a PEG content of 0.7 wt%, spheroid formed after 4 days. The adenosine triphosphate (ATP) activity of cells and the internal necrotic state of the spheroid change depending on PEG loading in the multi-block copolymers. As the formation rate of cell spheroid on low-PEG-ratio multi-block copolymers is slow, internal necrosis of cell spheroid is less likely to occur. Consequently, the cell spheroid formation rate by changing the PEG chain content in multi-block copolymers is successfully controlled. These unique surfaces are suggested to be useful for 3D cell culture.


Subject(s)
Biocompatible Materials , Polyethylene Glycols , Animals , Mice , Polyethylene Glycols/chemistry , NIH 3T3 Cells , Biocompatible Materials/chemistry , Polymers/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL