Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Odontology ; 112(2): 489-500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37978093

ABSTRACT

This pH cycling study aimed to investigate the effects of L-Ascorbic acid 2-phosphate (AA2P) salts of Mg, Zn, Mn, Sr, and Ba on the surface microhardness, compressive strength, diametral tensile strength (DTS), and solubility of root canal dentin. 186 cylindrical dentin specimens from 93 teeth were fortified with optimal concentrations of AA2P salts of Mg (0.18 mM), Zn (5.3 µM), Mn (2.2 × 10-8 M), Sr (1.8 µM), and Ba (1.9 µM). Saline was used as the control group. These dentin specimens underwent a 3-day cycling process simulating dentin caries formation through repeated sequences of demineralization and remineralization. Surface microhardness at 100 and 500 µm depths (n = 10/subgroup), scanning electron microscopy (n = 3/group), compressive strength (n = 10/group), DTS (n = 6/group), and solubility (n = 5/group) tests were performed to analyze the dentin specimens. Data were analyzed using Kolmogorov-Smirnov, one-way ANOVA, and Post Hoc Tukey tests (p < 0.05). The control group had significantly lower microhardness at both depths (p < 0.001), reduced DTS (p = 0.001), decreased compressive strength (p < 0.001), and higher weight loss (p < 0.001) than all other groups. The Sr group had the highest compressive strength and microhardness among all the groups. The microhardness was significantly higher for the 500 µm depth than the 100 µm depth (p < 0.001), but the difference in microhardness between depths across groups was not significant (p = 0.211). All fortifying solutions provided some protection against artificial caries lesions. Therefore, these elements might have penetrated and reinforced the demineralized dentin against acid dissolution.


Subject(s)
Ascorbic Acid/analogs & derivatives , Dental Caries , Dentin , Humans , Dental Caries Susceptibility , Salts/pharmacology
2.
J Endod ; 49(9): 1169-1175, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37429496

ABSTRACT

INTRODUCTION: This study evaluated the effects of diabetes mellitus (DM) on the nanostructure of root canal dentin using high-resolution transmission electron microscopy (HRTEM) and inductively coupled plasma mass spectrometry (ICP-MS). METHODS: Twenty extracted human premolars from diabetic and nondiabetic patients (n = 10 in each group) were decoronated and sectioned horizontally into 40 2-mm-thick dentin discs, with each disc designated for a specific test. ICP-MS was used to determine the different elemental levels of copper, lithium, zinc, selenium, strontium, manganese, and magnesium in diabetic and nondiabetic specimens. HRTEM was used to analyze the shape and quantity of the apatite crystals in diabetic and nondiabetic dentin at the nanostructural level. Statistical analysis was performed using Kolmogorov-Smirnov and Student t test (P < .05). RESULTS: ICP-MS revealed significant differences in trace element concentrations between the diabetic and nondiabetic specimens (P < .05), with lower levels of magnesium, zinc, strontium, lithium, manganese, and selenium (P < .05), and higher levels of copper in diabetic specimens (P < .05). HRTEM revealed that diabetic dentin exhibited a less compact structure with smaller crystallites and significantly more crystals in the 2500 nm2 area (P < .05). CONCLUSION: Diabetic dentin exhibited smaller crystallites and altered elemental levels more than nondiabetic dentin, which could explain the higher root canal treatment failure rate in diabetic patients.


Subject(s)
Diabetes Mellitus , Selenium , Trace Elements , Humans , Magnesium/analysis , Magnesium/pharmacology , Copper/analysis , Copper/pharmacology , Manganese/analysis , Manganese/pharmacology , Selenium/analysis , Selenium/pharmacology , Dental Pulp Cavity , Lithium/analysis , Lithium/pharmacology , Trace Elements/analysis , Trace Elements/pharmacology , Zinc/analysis , Zinc/pharmacology , Strontium/analysis , Strontium/pharmacology , Dentin
3.
Diagnostics (Basel) ; 13(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37296698

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a genetic disease with heterogeneous clinical presentation and prognosis. Within the broad phenotypic expression of HCM, there is a subgroup of patients with a left ventricular (LV) apical aneurysm, which has an estimated prevalence between 2% and 5%. LV apical aneurysm is characterized by an area of apical dyskinesis or akinesis, often associated with regional scarring. To date, the most accepted pathomechanism of this complication is, in absence of coronary artery disease, the high systolic intra-aneurysmal pressure, which, combined with impaired diastolic perfusion from lower stroke volume, results in supply-demand ischemia and myocardial injury. Apical aneurysm is increasingly recognized as a poor prognostic marker; however, the efficacy of prophylactic anticoagulation and/or intracardiac cardioverted defibrillator (ICD) in improving morbidity and mortality is not yet clearly demonstrated. This review aims to elucidate the mechanism, diagnosis and clinical implication of LV aneurysm in patients with HCM.

4.
J Hepatol ; 78(3): 558-573, 2023 03.
Article in English | MEDLINE | ID: mdl-36370949

ABSTRACT

BACKGROUND & AIMS: Acute liver failure (ALF) is a life-threatening disease characterised by high-grade inflammation and immunoparesis, which is associated with a high incidence of death from sepsis. Herein, we aimed to describe the metabolic dysregulation in ALF and determine whether systemic immune responses are modulated via the lysophosphatidylcholine (LPC)-autotaxin (ATX)-lysophosphatidylcholinic acid (LPA) pathway. METHODS: Ninety-six individuals with ALF, 104 with cirrhosis, 31 with sepsis and 71 healthy controls (HCs) were recruited. Pathways of interest were identified by multivariate statistical analysis of proton nuclear magnetic resonance spectroscopy and untargeted ultraperformance liquid chromatography-mass spectrometry-based lipidomics. A targeted metabolomics panel was used for validation. Peripheral blood mononuclear cells were cultured with LPA 16:0, 18:0, 18:1, and their immune checkpoint surface expression was assessed by flow cytometry. Transcript-level expression of the LPA receptor (LPAR) in monocytes was investigated and the effect of LPAR antagonism was also examined in vitro. RESULTS: LPC 16:0 was highly discriminant between ALF and HC. There was an increase in ATX and LPA in individuals with ALF compared to HCs and those with sepsis. LPCs 16:0, 18:0 and 18:1 were reduced in individuals with ALF and were associated with a poor prognosis. Treatment of monocytes with LPA 16:0 increased their PD-L1 expression and reduced CD155, CD163, MerTK levels, without affecting immune checkpoints on T and NK/CD56+T cells. LPAR1 and 3 antagonism in culture reversed the effect of LPA on monocyte expression of MerTK and CD163. MerTK and CD163, but not LPAR genes, were differentially expressed and upregulated in monocytes from individuals with ALF compared to controls. CONCLUSION: Reduced LPC levels are biomarkers of poor prognosis in individuals with ALF. The LPC-ATX-LPA axis appears to modulate innate immune response in ALF via LPAR1 and LPAR3. Further investigations are required to identify novel therapeutic agents targeting these receptors. IMPACT AND IMPLICATIONS: We identified a metabolic signature of acute liver failure (ALF) and investigated the immunometabolic role of the lysophosphatidylcholine-autotaxin-lysophosphatidylcholinic acid pathway, with the aim of finding a mechanistic explanation for monocyte behaviour and identifying possible therapeutic targets (to modulate the systemic immune response in ALF). At present, no selective immune-based therapies exist. We were able to modulate the phenotype of monocytes in vitro and aim to extend these findings to murine models of ALF as a next step. Future therapies may be based on metabolic modulation; thus, the role of specific lipids in this pathway require elucidation and the relative merits of autotaxin inhibition, lysophosphatidylcholinic acid receptor blockade or lipid-based therapies need to be determined. Our findings begin to bridge this knowledge gap and the methods used herein could be useful in identifying therapeutic targets as part of an experimental medicine approach.


Subject(s)
Liver Failure, Acute , Sepsis , Animals , Mice , Lysophosphatidylcholines , Monocytes , Leukocytes, Mononuclear/metabolism , c-Mer Tyrosine Kinase/metabolism , Liver Failure, Acute/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Immunity, Innate , Sepsis/metabolism , Lysophospholipids/metabolism
5.
Heliyon ; 8(6): e09733, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35774516

ABSTRACT

Background: In Covid-19, profound systemic inflammatory responses are accompanied by both metabolic risk factors for severity and, separately, metabolic mechanisms have been shown to underly disease progression. It is unknown whether this reflects similar situations in sepsis or is a unique characteristic of Covid-19. Aims: Define the immunometabolic signature of Covid-19. Methods: 65 patients with Covid-19,19 patients with sepsis and 14 healthy controls were recruited and sampled for plasma, serum and peripheral blood mononuclear cells (PBMCs) through 10 days of critical illness. Metabotyping was performed using the Biocrates p180 kit and multiplex cytokine profiling undertaken. PBMCs underwent phenotyping by flow cytometry. Immune and metabolic readouts were integrated and underwent pathway analysis. Results: Phopsphatidylcholines (PC) are reduced in Covid-19 but greater than in sepsis. Compared to controls, tryptophan is reduced in Covid-19 and inversely correlated with the severity of the disease and IFN-É£ concentrations, conversely the kyneurine and kyneurine/tryptophan ratio increased in the most severe cases. These metabolic changes were consistent through 2 pandemic waves in our centre. PD-L1 expression in CD8+ T cells, Tregs and CD14+ monocytes was increased in Covid-19 compared to controls. Conclusions: In our cohort, Covid-19 is associated with monocytopenia, increased CD14+ and Treg PD-L1 expression correlating with IFN-É£ plasma concentration and disease severity (SOFA score). The latter is also associated with metabolic derangements of Tryptophan, LPC 16:0 and PCs. Lipid metabolism, in particular phosphatidylcholines and lysophosphatidylcolines, seems strictly linked to immune response in Covid-19. Our results support the hypothesis that IFN-É£ -PD-L1 axis might be involved in the cytokine release syndrome typical of severe Covid-19 and the phenomenon persisted through multiple pandemic waves despite use of immunomodulation.

6.
Mult Scler Relat Disord ; 57: 103347, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35158456

ABSTRACT

BACKGROUND: For small molecules such as teriflunomide, used to treat relapsing multiple sclerosis (MS), that are potentially embryotoxic, there is a theoretical risk of transmission of the medication from males on the drug to female sexual partners. However, that risk has been undefined up to now. METHODS: Teriflunomide concentrations were assayed concomitantly in ten sexually active couples, not using barrier methods of contraception, in whom the male partner with MS was on treatment with teriflunomide 14 mg daily for at least two months. These results were compared by male and female age, teriflunomide concentrations and reported average number of incidences of sexual intercourse per month. The threshold level of detection of teriflunomide was 0.020 µg/ml in females. RESULTS: The average age of the cohort was 46.70 for males and 47.10 for females. Four of ten females had detectible teriflunomide concentrations (mean 0.046 µg/ml (range 0.22-0.077, standard deviation 0.025). Male age and both female teriflunomide positive threshold and female teriflunomide concentration were inversely correlated (r = 0.67, R2=0.45, p = 0.034) for the former and (r = 0.62, R2=0.39, p = 0.05, ns) for the latter. No significant correlations were observed for female age, male teriflunomide concentrations, or reported mean monthly episodes of sexual intercourse. CONCLUSION: This limited study suggests that the small risk that low levels of teriflunomide can be transmitted from male to female partners via sexual intercourse is related to male age. This supports the recommendations found in the United States Product Insert (USPI) stating that men taking teriflunomide who do not wish to father a child, and their female partners, should use reliable contraception. Men wishing to father a child should discontinue use of teriflunomide and undergo an accelerated elimination procedure to reduce the plasma concentrations of the medication to less than 0.02 mg/L (0.02 µg/ml1.


Subject(s)
Multiple Sclerosis , Crotonates , Female , Humans , Hydroxybutyrates , Male , Middle Aged , Multiple Sclerosis/drug therapy , Nitriles , Sexual Behavior , Sexual Partners , Toluidines , United States
7.
Cardiovasc Res ; 118(2): 461-474, 2022 01 29.
Article in English | MEDLINE | ID: mdl-34755842

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) can lead to multiorgan damage. MicroRNAs (miRNAs) in blood reflect cell activation and tissue injury. We aimed to determine the association of circulating miRNAs with COVID-19 severity and 28 day intensive care unit (ICU) mortality. METHODS AND RESULTS: We performed RNA-Seq in plasma of healthy controls (n = 11), non-severe (n = 18), and severe (n = 18) COVID-19 patients and selected 14 miRNAs according to cell- and tissue origin for measurement by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in a separate cohort of mild (n = 6), moderate (n = 39), and severe (n = 16) patients. Candidates were then measured by RT-qPCR in longitudinal samples of ICU COVID-19 patients (n = 240 samples from n = 65 patients). A total of 60 miRNAs, including platelet-, endothelial-, hepatocyte-, and cardiomyocyte-derived miRNAs, were differentially expressed depending on severity, with increased miR-133a and reduced miR-122 also being associated with 28 day mortality. We leveraged mass spectrometry-based proteomics data for corresponding protein trajectories. Myocyte-derived (myomiR) miR-133a was inversely associated with neutrophil counts and positively with proteins related to neutrophil degranulation, such as myeloperoxidase. In contrast, levels of hepatocyte-derived miR-122 correlated to liver parameters and to liver-derived positive (inverse association) and negative acute phase proteins (positive association). Finally, we compared miRNAs to established markers of COVID-19 severity and outcome, i.e. SARS-CoV-2 RNAemia, age, BMI, D-dimer, and troponin. Whilst RNAemia, age and troponin were better predictors of mortality, miR-133a and miR-122 showed superior classification performance for severity. In binary and triplet combinations, miRNAs improved classification performance of established markers for severity and mortality. CONCLUSION: Circulating miRNAs of different tissue origin, including several known cardiometabolic biomarkers, rise with COVID-19 severity. MyomiR miR-133a and liver-derived miR-122 also relate to 28 day mortality. MiR-133a reflects inflammation-induced myocyte damage, whilst miR-122 reflects the hepatic acute phase response.


Subject(s)
COVID-19/mortality , MicroRNAs/blood , SARS-CoV-2 , Adult , Aged , Biomarkers , COVID-19/complications , COVID-19/genetics , Cardiometabolic Risk Factors , Female , High-Throughput Nucleotide Sequencing , Humans , Intensive Care Units , Male , Middle Aged , Patient Acuity
8.
Article in English | MEDLINE | ID: mdl-34341094

ABSTRACT

BACKGROUND AND OBJECTIVES: We sought to define the risk of severe coronavirus disease 2019 (COVID-19) infection requiring hospitalization in patients with CNS demyelinating diseases such as MS and the factors that increase the risk for severe infection to guide decisions regarding patient care during the COVID-19 pandemic. METHODS: A pilot cohort of 91 patients with confirmed or suspected COVID-19 infection from the Northeastern United States was analyzed to characterize patient risk factors and factors associated with an increased severity of COVID-19 infection. Univariate analysis of variance was performed using the Mann-Whitney U test or analysis of variance for continuous variables and the χ2 or Fisher exact test for nominal variables. Univariate and stepwise multivariate logistic regression identified clinical characteristics or symptoms associated with hospitalization. RESULTS: Our cohort demonstrated a 27.5% hospitalization rate and a 4.4% case fatality rate. Performance on Timed 25-Foot Walk before COVID-19 infection, age, number of comorbidities, and presenting symptoms of nausea/vomiting and neurologic symptoms (e.g., paresthesia or weakness) were independent risk factors for hospitalization, whereas headache predicted a milder course without hospitalization. An absolute lymphocyte count was lower in hospitalized patients during COVID-19 infection. Use of disease-modifying therapy did not increase the risk of hospitalization but was associated with an increased need for respiratory support. DISCUSSION: The case fatality and hospitalization rates in our cohort were similar to those found in MS and general population COVID-19 cohorts within the region. Hospitalization was associated with increased disability, age, and comorbidities but not disease-modifying therapy use.


Subject(s)
COVID-19 , Demyelinating Autoimmune Diseases, CNS , Hospitalization/statistics & numerical data , Immunologic Factors/therapeutic use , Registries/statistics & numerical data , Respiration, Artificial/statistics & numerical data , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Cohort Studies , Comorbidity , Demyelinating Autoimmune Diseases, CNS/drug therapy , Demyelinating Autoimmune Diseases, CNS/epidemiology , Female , Humans , Immunologic Factors/adverse effects , Male , Middle Aged , Mortality , New England/epidemiology , Pilot Projects , Risk Factors , Severity of Illness Index
9.
Nat Commun ; 12(1): 3406, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099652

ABSTRACT

Prognostic characteristics inform risk stratification in intensive care unit (ICU) patients with coronavirus disease 2019 (COVID-19). We obtained blood samples (n = 474) from hospitalized COVID-19 patients (n = 123), non-COVID-19 ICU sepsis patients (n = 25) and healthy controls (n = 30). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in plasma or serum (RNAemia) of COVID-19 ICU patients when neutralizing antibody response was low. RNAemia is associated with higher 28-day ICU mortality (hazard ratio [HR], 1.84 [95% CI, 1.22-2.77] adjusted for age and sex). RNAemia is comparable in performance to the best protein predictors. Mannose binding lectin 2 and pentraxin-3 (PTX3), two activators of the complement pathway of the innate immune system, are positively associated with mortality. Machine learning identified 'Age, RNAemia' and 'Age, PTX3' as the best binary signatures associated with 28-day ICU mortality. In longitudinal comparisons, COVID-19 ICU patients have a distinct proteomic trajectory associated with mortality, with recovery of many liver-derived proteins indicating survival. Finally, proteins of the complement system and galectin-3-binding protein (LGALS3BP) are identified as interaction partners of SARS-CoV-2 spike glycoprotein. LGALS3BP overexpression inhibits spike-pseudoparticle uptake and spike-induced cell-cell fusion in vitro.


Subject(s)
COVID-19/prevention & control , Critical Care/statistics & numerical data , Proteomics/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Adult , Animals , Antibodies, Neutralizing/immunology , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Kaplan-Meier Estimate , Male , Middle Aged , RNA, Viral/blood , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Serum Amyloid P-Component/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Load/immunology
10.
Hepatology ; 74(2): 907-925, 2021 08.
Article in English | MEDLINE | ID: mdl-33908067

ABSTRACT

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is characterized by systemic inflammation, monocyte dysfunction, and susceptibility to infection. Lysophosphatidylcholines (LPCs) are immune-active lipids whose metabolic regulation and effect on monocyte function in ACLF is open for study. APPROACHES & RESULTS: Three hundred forty-two subjects were recruited and characterized for blood lipid, cytokines, phospholipase (PLA), and autotaxin (ATX) concentration. Peripheral blood mononuclear cells and CD14+ monocytes were cultured with LPC, or its autotaxin (ATX)-derived product, lysophosphatidic acid (LPA), with or without lipopolysaccharide stimulation and assessed for surface marker phenotype, cytokines production, ATX and LPA-receptor expression, and phagocytosis. Hepatic ATX expression was determined by immunohistochemistry. Healthy volunteers and patients with sepsis or acute liver failure served as controls. ACLF serum was depleted in LPCs with up-regulated LPA levels. Patients who died had lower LPC levels than survivors (area under the receiver operating characteristic curve, 0.94; P < 0.001). Patients with high-grade ACLF had the lowest LPC concentrations and these rose over the first 3 days of admission. ATX concentrations were higher in patients with AD and ACLF and correlated with Model for End-Stage Liver Disease, Consortium on Chronic Liver Failure-Sequential Organ Failure Assessment, and LPC/LPA concentrations. Reduction in LPC correlated with higher monocyte Mer-tyrosine-kinase (MerTK) and CD163 expression. Plasma ATX concentrations rose dynamically during ACLF evolution, correlating with IL-6 and TNF-α, and were associated with increased hepatocyte ATX expression. ACLF patients had lower human leukocyte antigen-DR isotype and higher CD163/MerTK monocyte expression than controls; both CD163/MerTK expression levels were reduced in ACLF ex vivo following LPA, but not LPC, treatment. LPA induced up-regulation of proinflammatory cytokines by CD14+ cells without increasing phagocytic capacity. CONCLUSIONS: ATX up-regulation in ACLF promotes LPA production from LPC. LPA suppresses MerTK/CD163 expression and increases monocyte proinflammatory cytokine production. This metabolic pathway could be investigated to therapeutically reprogram monocytes in ACLF.


Subject(s)
Acute-On-Chronic Liver Failure/mortality , Monocytes/immunology , Acute-On-Chronic Liver Failure/diagnosis , Acute-On-Chronic Liver Failure/immunology , Acute-On-Chronic Liver Failure/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cell Separation , Cells, Cultured , Female , Flow Cytometry , Humans , Inflammation/diagnosis , Inflammation/immunology , Inflammation/metabolism , Lysophosphatidylcholines/metabolism , Lysophospholipids/metabolism , Male , Metabolomics , Middle Aged , Monocytes/metabolism , Phosphoric Diester Hydrolases/metabolism , Primary Cell Culture , Prospective Studies , Severity of Illness Index , Signal Transduction/immunology , Young Adult
11.
Mitochondrion ; 57: 119-130, 2021 03.
Article in English | MEDLINE | ID: mdl-33387664

ABSTRACT

BACKGROUND: Dysfunctional metabolism lies at the centre of the pathogenesis for Non-Alcoholic Fatty Liver Disease (NAFLD) and involves mitochondrial dysfunction, lipid dysmetabolism and oxidative stress. This study, for the first time, explores real-time energy changes in peripheral blood and corresponding metabolite changes, to investigate whether mitochondria-related immunometabolic biomarkers can predict progression in NAFLD. METHODS: Thirty subjects divided into 3 groups were assessed: NAFLD with biopsy-proven mild fibrosis (n = 10), severe fibrosis (n = 10) and healthy controls (HC, n = 10). Mitochondrial functional analysis was performed in a Seahorse XFp analyzer in live peripheral blood mononuclear cells (PBMCs). Global metabolomics quantified a broad range of human plasma metabolites. Mitochondrial carbamoyl phosphate synthase 1(CPS-1), Ornithine transcarbamoylase (OTC), Fibroblast growth factor-21 (FGF-21) and a range of cytokines in plasma were measured by ELISA. RESULTS: NAFLD patients with severe fibrosis demonstrated reduced maximal respiration (106 ± 25 versus 242 ± 62, p < 0.05) and reserve capacity (56 ± 16 versus 184 ± 42, p = 0.006) compared to mild/moderate fibrosis. Comparing mild/moderate vs severe liver fibrosis in patients with NAFLD, 14 out of 493 quantified metabolites were significantly changed (p < 0.05). Most of the amino acids modulated were the urea cycle (UC) components which included citrulline/ornithine ratio, arginine and glutamate. Plasma levels of CPS-1 and FGF-21 were significantly higher mild versus severe fibrosis in NAFLD patients. This novel panel generated an area under the ROC of 0.95, sensitivity of 100% and specificity 80% and p = 0.0007 (F1-F2 versus F3-F4). CONCLUSION: Progression in NAFLD is associated with mitochondrial dysfunction and changes in metabolites associated with the urea cycle. We demonstrate a unique panel of mitochondrial-based, signatures which differentiate between stages of NAFLD. LAY SUMMARY: Mitochondrial dysfunction in peripheral cells along with alterations in metabolites of urea cycle act as a sensor of hepatocyte mitochondrial damage. These changes can be measured in blood and together represent a unique panel of biomarkers for progression of fibrosis in NAFLD.


Subject(s)
Carbamoyl-Phosphate Synthase (Ammonia)/blood , Fibroblast Growth Factors/blood , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Ornithine Carbamoyltransferase/blood , Adult , Aged , Biomarkers/blood , Case-Control Studies , Cross-Sectional Studies , Cytokines/blood , Female , Humans , Male , Metabolomics/methods , Middle Aged , Non-alcoholic Fatty Liver Disease/blood , Up-Regulation , Urea/blood , Young Adult
12.
Am J Physiol Cell Physiol ; 320(1): C57-C65, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33151090

ABSTRACT

The COVID-19 pandemic has been the primary global health issue since its outbreak in December 2019. Patients with metabolic syndrome suffer from severe complications and a higher mortality rate due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We recently proposed that SARS-CoV-2 can hijack host mitochondrial function and manipulate metabolic pathways for their own advantage. The aim of the current study was to investigate functional mitochondrial changes in live peripheral blood mononuclear cells (PBMCs) from patients with COVID-19 and to decipher the pathways of substrate utilization in these cells and corresponding changes in the inflammatory pathways. We demonstrate mitochondrial dysfunction, metabolic alterations with an increase in glycolysis, and high levels of mitokine in PBMCs from patients with COVID-19. Interestingly, we found that levels of fibroblast growth factor 21 mitokine correlate with COVID-19 disease severity and mortality. These data suggest that patients with COVID-19 have a compromised mitochondrial function and an energy deficit that is compensated by a metabolic switch to glycolysis. This metabolic manipulation by SARS-CoV-2 triggers an enhanced inflammatory response that contributes to the severity of symptoms in COVID-19. Targeting mitochondrial metabolic pathway(s) can help define novel strategies for COVID-19.


Subject(s)
COVID-19/virology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Mitochondria/metabolism , SARS-CoV-2/physiology , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/metabolism , Female , Fibroblast Growth Factors/blood , Glucose/metabolism , Glycolysis , Humans , Interleukin-6/blood , Male , Middle Aged
13.
Shock ; 55(6): 752-758, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33021572

ABSTRACT

ABSTRACT: Critically ill patients with COVID-19 infection frequently exhibit a hyperinflammatory response and develop organ failures; however, the underlying mechanisms are unclear. We investigated the microcirculatory, endothelial, and inflammatory responses in critically ill COVID-19 patients and compared them to a group of patients with septic shock in a prospective observational case control study. Thirty critically ill patients with COVID-19 were compared to 33 patients with septic shock.Measurements of sublingual microcirculatory flow using Incident Dark Field video-microscopy and serial measurements of IL-6 and Syndecan-1 levels were performed. COVID-19 patients had significantly less vasoactive drug requirement and lower plasma lactate than those with septic shock. Microcirculatory flow was significantly worse in septic patients than those with COVID-19 (MFI 2.6 vs 2.9 p 0.02, PPV 88 vs 97% P < 0.001). IL-6 was higher in patients with septic shock than COVID-19 (1653 vs 253 pg/mL, P 0.03). IL-6 levels in COVID 19 patients were not elevated compared to healthy controls except on the day of ICU admission. Syndecan-1 levels were not different between the two pathological groups. Compared to patients with undifferentiated septic shock an overt shock state with tissue hypoperfusion does not appear typical of COVID-19 infection. There was no evidence of significant sublingual microcirculatory impairment, widespread endothelial injury or marked inflammatory cytokine release in this group of critically ill COVID-19 patients.


Subject(s)
COVID-19/blood , Endothelium, Vascular/metabolism , Interleukin-6/blood , Microcirculation , SARS-CoV-2/metabolism , Shock, Septic/blood , Syndecan-1/blood , Aged , COVID-19/pathology , Critical Illness , Endothelium, Vascular/pathology , Female , Humans , Inflammation/blood , Inflammation/pathology , Male , Middle Aged , Prospective Studies , Shock, Septic/pathology
14.
J Clin Med ; 9(11)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126475

ABSTRACT

The pathophysiological mechanisms of venous thromboembolism are venous stasis, endothelial damage, and hypercoagulability, while less attention has been given to the role of both innate and native immunity. In this paper, we investigate the involvement of the activated immune system detected through some indicators such as TIM3 and Dectin-1 expressed by T lymphocytes. TIM3 and Dectin-1, two surface molecules that regulate the fine-tuning of innate and adaptive immune responses, were evaluated in patients affected by deep vein thrombosis of lower limbs (DVTLL). CD3+, CD4+ and CD8+ T lymphocytes obtained from patients affected by DVTLL were analysed using fluorescence-conjugated antibodies for TIM3 and Dectin-1 by an imaging flow cytometer. DVTLL patients showed a higher number of CD4+ and CD8+ T lymphocytes. TIM3 expression in T lymphocytes was very low in both DVTLL patients and controls. On the contrary, an increase in Dectin-1+ cells among CD4+ and CD8+ T lymphocytes from DVTLL patients was observed. Dectin-1 is known to play a role in inflammation and immunity and our result suggests its potential involvement in thrombotic venous disease.

15.
J Neuroimaging ; 30(6): 917-929, 2020 11.
Article in English | MEDLINE | ID: mdl-32830899

ABSTRACT

BACKGROUND AND PURPOSE: Meningeal inflammation is implicated in cortical demyelination and disability progression in multiple sclerosis (MS). Gadolinium (Gd)-enhanced 3-dimensional (3D) FLAIR (fluid-attenuated inversion recovery) magnetic resonance imaging (MRI) can identify leptomeningeal enhancement (LME) in MS. Further characterization is needed to determine if LME is an imaging biomarker for meningeal inflammation. We sought to characterize the natural history of LME in the community setting, including persistence/resolution, effect of disease-modifying therapy, scanner variability, timing of acquisition, and imaging pitfalls that may lead to misinterpretation. METHODS: A total of 341 MRI exams with Gd-enhanced 3D-FLAIR were reviewed in MS and non-MS patients to determine frequency of enhancement by MS subtype and association with therapy. A phantom was used to assess scanner variability. Two MS patients with seven LME were imaged at four postinjection time points to generate time-intensity curves. Imaging pitfalls were compiled. RESULTS: A total of 16.6% (40/241) of MS patients revealed LME compared to 8% (8/100) in non-MS patients (P = .04). There was no association with MS subtype, therapy, or disease activity. Detection using General Electric's version of 3D-FLAIR (29%) was greater than with Siemen's 3D-FLAIR (12%) at 1.5T (Tesla) (P < .001). Lesions were generally stable but resolved in 2 patients following high-dose steroids. LME kinetics were heterogeneous, even within patients, without uniform optimal time for acquisition. Enhancement curves exhibited three different variations, similar to the two-compartment model. Imaging pitfalls included enhancements of uncertain biologic significance, cortical veins and anatomic structures, and imaging artifacts. CONCLUSIONS: Awareness of LME characteristics, variability with imaging parameters, and imaging pitfalls will facilitate determining the potential role as an imaging biomarker for meningeal inflammation.


Subject(s)
Meninges/diagnostic imaging , Multiple Sclerosis/diagnostic imaging , Adult , Aged , Aged, 80 and over , Female , Gadolinium , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Male , Meninges/pathology , Middle Aged , Multiple Sclerosis/pathology , Young Adult
16.
Cells ; 9(5)2020 05 07.
Article in English | MEDLINE | ID: mdl-32392801

ABSTRACT

The extracellular matrix (ECM) plays an important role in the regulation of the tissue microenvironment and in the maintenance of cellular homeostasis. Several proteins with a proteolytic activity toward several ECM components are involved in the regulation and remodeling of the ECM. Among these, Matrix Metalloproteinases (MMPs) are a class of peptidase able to remodel the ECM by favoring the tumor invasive processes. Of these peptidases, MMP-9 is the most involved in the development of cancer, including that of melanoma. Dysregulations of the MAPKs and PI3K/Akt signaling pathways can lead to an aberrant overexpression of MMP-9. Even ncRNAs are implicated in the aberrant production of MMP-9 protein, as well as other proteins responsible for the activation or inhibition of MMP-9, such as Osteopontin and Tissue Inhibitors of Metalloproteinases. Currently, there are different therapeutic approaches for melanoma, including targeted therapies and immunotherapies. However, no biomarkers are available for the prediction of the therapeutic response. In this context, several studies have tried to understand the diagnostic, prognostic and therapeutic potential of MMP-9 in melanoma patients by performing clinical trials with synthetic MMPs inhibitors. Therefore, MMP-9 may be considered a promising molecule for the management of melanoma patients due to its role as a biomarker and therapeutic target.


Subject(s)
Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinases/metabolism , Melanoma/enzymology , Animals , Clinical Trials as Topic , Epigenesis, Genetic/drug effects , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Models, Biological
17.
Int J Mol Sci ; 20(21)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652751

ABSTRACT

The awareness of genome complexity brought a radical approach to the study of transcriptome, opening eyes to single RNAs generated from two or more adjacent genes according to the present consensus. This kind of transcript was thought to originate only from chromosomal rearrangements, but the discovery of readthrough transcription opens the doors to a new world of fusion RNAs. In the last years many possible intergenic cis-splicing mechanisms have been proposed, unveiling the origins of transcripts that contain some exons of both the upstream and downstream genes. In some cases, alternative mechanisms, such as trans-splicing and transcriptional slippage, have been proposed. Five databases, containing validated and predicted Fusion Transcripts of Adjacent Genes (FuTAGs), are available for the scientific community. A comparative analysis revealed that two of them contain the majority of the results. A complete analysis of the more widely characterized FuTAGs is provided in this review, including their expression pattern in normal tissues and in cancer. Gene structure, intergenic splicing patterns and exon junction sequences have been determined and here reported for well-characterized FuTAGs. The available functional data and the possible roles in cancer progression are discussed.


Subject(s)
Neoplasms/genetics , Trans-Splicing , Gene Expression Regulation, Neoplastic , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Food Chem Toxicol ; 126: 322-331, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30654099

ABSTRACT

Arsenic in the environment pose major threats to human health, and especially the inorganic form can result in adverse health effects. This review analyse papers from 2004 to 2017 on As in fresh fish and molluscs caught in the Mediterranean sea and the European coast of the Atlantic ocean allowing the identification of the marine area with a greater As bioavailability and in particular the identification of the European populations more exposed to In-As by consuming fresh seafood. Results were separated on the base of the fishing site and the concentrations were reworked to assess the average daily intake to In-As as well as Target Hazard Quotient and Cancer Risk. Overall, the greater availability in Tot-As concentration in the pelagic compartment found in the Mediterranean Sea is not present along the European coasts of Atlantic Ocean. Furthermore, only in the Mediterranean Sea, results highlighted significant differences between Tot-As concentrations in seafood subgroups. In both areas, In-As concentrations showed the following trend: molluscs > pelagic > demersal with significant differences between subgroups. The European populations more exposed to In-As from fish and molluscs are the French, Spanish, Italian and Greek, with particular regards to children of 3-6 years old, which should minimize the consumption of molluscs to avoid carcinogenic and non-carcinogenic risks.


Subject(s)
Arsenic/analysis , Food Contamination/analysis , Seafood/analysis , Animals , Atlantic Ocean , Humans , Mediterranean Sea , Risk Assessment , Water Pollutants, Chemical/analysis
19.
Int Med Case Rep J ; 8: 23-7, 2015.
Article in English | MEDLINE | ID: mdl-25678826

ABSTRACT

Patients may refuse, be unable to use, or show nonresponse to conventional steroid treatment of multiple sclerosis (MS) exacerbation. Adrenocorticotropic hormone (ACTH), one of several melanocortin peptides with mechanisms of action beyond steroidogenesis, should be reconsidered in the treatment of MS exacerbations. The current case report presents the treatment outcome of a patient with new-onset MS exacerbation treated with ACTH following lack of response to steroid treatment. A 49-year-old female presented with slurred speech, blurry vision, off-balance feeling, and possible left-sided mild internuclear ophthalmoplegia. Magnetic resonance imaging showed findings typical for primary demyelinating disease. Despite 5-day high-dose intravenous methylprednisolone treatment, the patient's symptoms worsened, including right-sided facial weakness, gait instability that required unilateral support, drooling, and new dorsal pontine white matter lesion on magnetic resonance imaging. Treatment with ACTH gel 80 U for 5 consecutive days resulted in patient functional improvement, including vision and gait. ACTH gel treatment stabilized disease progression, allowing the initiation of long-term disease-modifying treatment with monthly intravenous natalizumab. Effects of melanocortin signaling on immune function and inflammation beyond steroidogenesis provide a basis for understanding the clinical experience with ACTH gel treatment in patients with MS exacerbation.

20.
J Forensic Sci ; 53(2): 321-4, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18366562

ABSTRACT

This paper reports a method for the determination of the firing distance. Atomic absorption spectroscopy (AAS) was used to determine the lead (Pb) pattern around bullet holes produced by shots on test targets from the gun. Test shots were made with a Colt 38 Special at 5, 10, 20, 25, 30, 35, 40, 45, 50, 60, 80, and 100 cm target distance. The target was created with sheets of Whatman no. 1 paper on a polystyrene support. The target was subdivided into three carefully cut out rings (1, 2, and 3; with external diameters of 1.4 cm; 5 cm; 10.2 cm, respectively). Each sample was analyzed with graphite furnace AAS. Lead values analysis performed for each ring yielded a linear relation between the firing distance (cm) and the logarithm of lead amounts (microg/cm(2)) in definite target areas (areas 2 + 3): [ln dPb(2+3) = a(0) + a(1)l]; where dPb(2+3) = lead microg/cm(2) of area 2 + 3; a(0) and a(1) are experimentally calculated; l = distance in cm.

SELECTION OF CITATIONS
SEARCH DETAIL
...