Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34083417

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is refractory to immune checkpoint inhibitor (ICI) therapy. We sought to determine to what extent this immune evasion is due to intrinsic properties of the tumor cells versus the specialized immune context of the brain, and if it can be reversed. METHODS: We used CyTOF mass cytometry to compare the tumor immune microenvironments (TIME) of human tumors that are generally ICI-refractory (GBM and sarcoma) or ICI-responsive (renal cell carcinoma), as well as mouse models of GBM that are ICI-responsive (GL261) or ICI-refractory (SB28). We further compared SB28 tumors grown intracerebrally versus subcutaneously to determine how tumor site affects TIME and responsiveness to dual CTLA-4/PD-1 blockade. Informed by these data, we explored rational immunotherapeutic combinations. RESULTS: ICI-sensitivity in human and mouse tumors was associated with increased T cells and dendritic cells (DCs), and fewer myeloid cells, in particular PD-L1+ tumor-associated macrophages. The SB28 mouse model of GBM responded to ICI when grown subcutaneously but not intracerebrally, providing a system to explore mechanisms underlying ICI resistance in GBM. The response to ICI in the subcutaneous SB28 model required CD4 T cells and NK cells, but not CD8 T cells. Recombinant FLT3L expanded DCs, improved antigen-specific T cell priming, and prolonged survival of mice with intracerebral SB28 tumors, but at the cost of increased Tregs. Targeting PD-L1 also prolonged survival, especially when combined with stereotactic radiation. CONCLUSIONS: Our data suggest that a major obstacle for effective immunotherapy of GBM is poor antigen presentation in the brain, rather than intrinsic immunosuppressive properties of GBM tumor cells. Deep immune profiling identified DCs and PD-L1+ tumor-associated macrophages as promising targetable cell populations, which was confirmed using therapeutic interventions in vivo.


Subject(s)
Brain Neoplasms/therapy , CTLA-4 Antigen/metabolism , Glioblastoma/therapy , Immune Checkpoint Inhibitors/administration & dosage , Membrane Proteins/administration & dosage , Programmed Cell Death 1 Receptor/metabolism , Animals , Brain Neoplasms/immunology , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Glioblastoma/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Membrane Proteins/pharmacology , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Regulatory/metabolism , Tumor Escape/drug effects , Xenograft Model Antitumor Assays
2.
Oncotarget ; 8(14): 23851-23861, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-27793021

ABSTRACT

PURPOSE: To determine the maximum tolerated dose (MTD), toxicities, and pharmacodynamics effects of sirolimus combined with oral metronomic topotecan and cyclophosphamide in a pediatric population. MATERIALS AND METHODS: Patients who were 1 to 30 years of age with relapsed/refractory solid tumors (including CNS) were eligible. Patients received daily oral sirolimus and cyclophosphamide (25-50 mg/m2/dose) on days 1-21 and oral topotecan (0.8 mg/m2/dose) on days 1-14 in 28-day cycles. Sirolimus steady-state plasma trough concentrations of 3-7.9 ng/mL and 8-12.0 ng/mL were evaluated, with dose escalation based on a 3+3 phase 1 design. Biomarkers of angiogenesis were also evaluated. RESULTS: Twenty-one patients were treated (median age 18 years; range 9-30). Dose-limiting toxicities included myelosuppression, ALT elevation, stomatitis, and hypertriglyceridemia. The MTD was sirolimus with trough goal of 8-12.0 ng/mL; cyclophosphamide 25 mg/m2/dose; and topotecan 0.8 mg/m2/dose. No objective responses were observed. Four patients had prolonged stable disease > 4 cycles (range 4-12). Correlative biomarker analyses demonstrated reductions in thrombospondin-1 (p=0.043) and soluble vascular endothelial growth factor receptor-2 plasma concentrations at 21 days compared to baseline. CONCLUSIONS: The combination of oral sirolimus, topotecan, and cyclophosphamide was well tolerated and biomarker studies demonstrated modulation of angiogenic pathways with this regimen.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasms/drug therapy , Adolescent , Adult , Antibiotics, Antineoplastic/administration & dosage , Child , Cyclophosphamide/administration & dosage , Female , Humans , Male , Neoplasms/pathology , Sirolimus/administration & dosage , Topotecan/administration & dosage , Young Adult
3.
Blood ; 124(12): 1976-86, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25079358

ABSTRACT

Selective targeting of non-T cells, including antigen-presenting cells (APCs), is a potential strategy to prevent graft-versus-host-disease (GVHD) but to maintain graft-versus-tumor (GVT) effects. Because type I and II interferons signal through signal transducer and activator of transcription-1 (STAT1), and contribute to activation of APCs after allogeneic bone marrow transplant (alloBMT), we examined whether the absence of STAT1 in donor APCs could prevent GVHD while preserving immune competence. Transplantation of STAT1(-/-) bone marrow (BM) prevented GVHD induced by STAT1(+/+) T cells, leading to expansion of B220(+) cells and regulatory T cells. STAT1(-/-) BM also preserved GVT activity and enhanced overall survival of tumor-challenged mice in the setting of GVHD. Furthermore, recipients of allogeneic STAT1(-/-) BM demonstrated increased CD9(-)Siglec H(hi) plasmacytoid dendritic cells (pDCs), and depletion of pDCs after STAT1(-/-) BM transplantation prevented GVHD resistance. STAT1(-/-) pDCs were found to produce decreased free radicals, IFNα, and interleukin (IL)-12, and increased IL-10. Additionally, STAT1(-/-) pDCs that were isolated after alloBMT showed increased gene expression of S100A8 and S100A9, and transplantation of S100A9(-/-) BM reduced GVHD-free survival. Finally, elevated STAT3 was found in STAT1(-/-) pDCs isolated after alloBMT. We conclude that interfering with interferon signaling in APCs such as pDCs provides a novel approach to regulate the GVHD/GVT axis.


Subject(s)
Dendritic Cells/metabolism , Dendritic Cells/transplantation , Graft vs Host Disease/prevention & control , STAT1 Transcription Factor/deficiency , STAT3 Transcription Factor/metabolism , Allografts , Animals , Bone Marrow Transplantation/adverse effects , Calgranulin A/genetics , Calgranulin B/genetics , Calgranulin B/metabolism , Dendritic Cells/immunology , Female , Gene Expression , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , STAT1 Transcription Factor/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tissue Donors
4.
J Immunol ; 190(3): 1351-9, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23275602

ABSTRACT

Tumor-targeted vaccines represent a strategy to enhance the graft-versus-leukemia effect after allogeneic blood and marrow transplantation (BMT). We have previously shown that graft-versus-host disease (GVHD) can negatively impact quantitative responses to vaccines. Using a minor histocompatibility Ag-mismatched BMT (B6 → B6 × C3H.SW) followed by adoptive transfer of HY-specific T cells and HY-expressing dendritic cells, we assessed whether GVHD induced by donor lymphocyte infusion (DLI) affects the persistence, proliferation, and survival of vaccine-responding, nonalloantigen reactive T cells. Both CD8(+) and CD4(+) HY-specific T cells undergo less vaccine-driven proliferation in allogeneic recipients with GVHD. Although vaccine-responding CD8(+) T cells show decreased IFN-γ and CD107a production, CD4(+) T cells exhibit increased programmed death 1 and T cell Ig mucin-like domain 3 expression. In addition, the degree of apoptosis in vaccine-responding CD8(+) T cells was higher in the presence of GVHD, but there was no difference in CD4(+) T cell apoptosis. Using Fas ligand-deficient or TRAIL-deficient DLI had no impact on apoptosis of HY-specific T cells. However, perforin-deficient alloreactive DLI induced significantly less apoptosis of vaccine-responding CD8(+) T cells and resulted in enhanced tumor protection. Thus, diminished vaccine responses during GVHD result from impaired proliferation of CD8(+) and CD4(+) T cells responding to vaccination, with an additional contribution from perforin-mediated CD8(+) T cell apoptosis. These results provide important insights toward optimizing vaccine responses after allogeneic BMT.


Subject(s)
Apoptosis/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Dendritic Cells/immunology , Graft vs Host Disease/immunology , Immunotherapy , Pore Forming Cytotoxic Proteins/physiology , T-Lymphocyte Subsets/immunology , Vaccination , Adoptive Transfer , Animals , Animals, Congenic , Cancer Vaccines/therapeutic use , Carcinoma, Transitional Cell/immunology , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/therapy , Cell Division , Coculture Techniques , Fas Ligand Protein/deficiency , Fas Ligand Protein/immunology , Female , H-Y Antigen/immunology , Immunodominant Epitopes/immunology , Lymphocyte Transfusion , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/immunology , Radiation Chimera , Specific Pathogen-Free Organisms , TNF-Related Apoptosis-Inducing Ligand/deficiency , TNF-Related Apoptosis-Inducing Ligand/immunology
5.
Biol Blood Marrow Transplant ; 17(6): 790-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21216299

ABSTRACT

Extracorporeal photopheresis (ECP) is emerging as a therapy for graft-versus-host-disease (GVHD), but the full mechanism of action and the impact on immunity have not been fully established. After murine minor histocompatibility antigen-mismatched bone marrow (BM) transplantation (allo-BMT), coinfusion of ECP-treated splenocytes with T cell-replete BM attenuated GVHD irrespective of the donor strain of the ECP-treated splenocytes, and was associated with increased numbers of regulatory T cells. Coculture of myeloid dendritic cells (DCs) with ECP-treated splenocytes resulted in increased interleukin (IL)-10 production after submaximal stimulation with lipopolysaccharide. Furthermore, male myeloid DCs exposed to ECP-treated splenocytes were less potent at inducing CD8(+) HY responses when used as a vaccine in vivo. The efficacy of ECP-treated splenocytes was enhanced when administered just before delayed donor lymphocyte infusion following T cell-depleted allo-BMT, allowing for the administration of sufficient numbers of T cells to respond to myeloid DC vaccination in the absence of a thymus. Finally, the therapeutic effect of ECP-treated splenocytes was lost in recipients of IL-10-deficient BM. We demonstrate that ECP-treated splenocytes attenuate GVHD irrespective of the source of ECP-treated cells via a mechanism that likely involves modulation of DCs and requires IL-10 produced by BM-derived cells. Importantly, the attenuation of GVHD by ECP-treated splenocytes permits donor lymphocyte infusion-dependent responses to DC vaccines after allo-BMT.


Subject(s)
Dendritic Cells/immunology , Graft vs Host Disease , Interleukin-10/immunology , Macrophages/radiation effects , Monocytes/radiation effects , Photopheresis/methods , Vaccination/methods , Animals , Bone Marrow Transplantation/immunology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Coculture Techniques , Dendritic Cells/cytology , Dendritic Cells/transplantation , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Interleukin-10/biosynthesis , Lipopolysaccharides/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Depletion , Macrophages/transplantation , Male , Methoxsalen/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Monocytes/transplantation , Spleen/pathology , T-Lymphocytes, Regulatory/immunology , Transplantation, Homologous , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL