Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Cell Stem Cell ; 30(10): 1315-1330.e10, 2023 10 05.
Article En | MEDLINE | ID: mdl-37802037

COVID-19 is linked to endotheliopathy and coagulopathy, which can result in multi-organ failure. The mechanisms causing endothelial damage due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain elusive. Here, we developed an infection-competent human vascular organoid from pluripotent stem cells for modeling endotheliopathy. Longitudinal serum proteome analysis identified aberrant complement signature in critically ill patients driven by the amplification cycle regulated by complement factor B and D (CFD). This deviant complement pattern initiates endothelial damage, neutrophil activation, and thrombosis specific to organoid-derived human blood vessels, as verified through intravital imaging. We examined a new long-acting, pH-sensitive (acid-switched) antibody targeting CFD. In both human and macaque COVID-19 models, this long-acting anti-CFD monoclonal antibody mitigated abnormal complement activation, protected endothelial cells, and curtailed the innate immune response post-viral exposure. Collectively, our findings suggest that the complement alternative pathway exacerbates endothelial injury and inflammation. This underscores the potential of CFD-targeted therapeutics against severe viral-induced inflammathrombotic outcomes.


COVID-19 , Animals , Humans , SARS-CoV-2 , Complement Factor D , Endothelial Cells , Haplorhini
2.
Mol Genet Metab ; 140(3): 107652, 2023 11.
Article En | MEDLINE | ID: mdl-37506513

BACKGROUND: Mucopolysaccharidosis II (MPS II) is a rare, X-linked lysosomal storage disease caused by pathogenic variants of the iduronate-2-sulfatase gene (IDS) and is characterized by a highly variable disease spectrum. MPS II severity is difficult to predict based on IDS variants alone; while some genotypes are associated with specific phenotypes, the disease course of most genotypes remains unknown. This study aims to refine the genotype-phenotype categorization by combining information from the scientific literature with data from two clinical studies in MPS II. METHODS: Genotype, cognitive, and behavioral data from 88 patients in two clinical studies (NCT01822184, NCT02055118) in MPS II were analyzed post hoc in combination with published information on IDS variants from the biomedical literature through a semi-automated multi-stage review process. The Differential Ability Scales, second edition (DAS-II) and the Vineland Adaptive Behavior Scales™, second edition (VABS-II) were used to measure cognitive function and adaptive behavior. RESULTS: The most common category of IDS variant was missense (47/88, 53.4% of total variants). The mean (standard deviation [SD]) baseline DAS-II General Conceptual Ability (GCA) and VABS-II Adaptive Behavior Composite (ABC) scores were 74.0 (16.4) and 82.6 (14.7), respectively. All identified IDS complete deletions/large rearrangements (n = 7) and large deletions (n = 1) were associated with a published 'severe' or 'predicted severe' progressive neuronopathic phenotype, characterized by central nervous system involvement. In categories comprising more than one participant, mean baseline DAS-II GCA scores (SD) were lowest among individuals with complete deletions/large rearrangements 64.0 (9.1, n = 4) and highest among those with splice site variants 83.8 (14.2, n = 4). Mean baseline VABS-II ABC scores (SD) were lowest among patients with unclassifiable variants 79.3 (4.9, n = 3) and highest among those with a splice site variant 87.2 (16.1, n = 5), in variant categories with more than one participant. CONCLUSIONS: Most patients in the studies had an MPS II phenotype categorized as 'severe' or 'predicted severe' according to classifications, as reported in the literature. Patients with IDS complete deletion/large rearrangement variants had lower mean DAS-II GCA scores than those with other variants, as well as low VABS-II ABC, confirming an association with the early progressive 'severe' (neuronopathic) disease. These data provide a starting point to improve the classification of MPS II phenotypes and the characterization of the genotype-phenotype relationship.


Iduronate Sulfatase , Mucopolysaccharidosis II , Humans , Mucopolysaccharidosis II/genetics , Mutation , Iduronate Sulfatase/genetics , Genotype , Patient Acuity , Adaptation, Psychological
3.
Orphanet J Rare Dis ; 14(1): 225, 2019 10 15.
Article En | MEDLINE | ID: mdl-31615551

The number of available therapies for rare diseases remains low, as fewer than 6% of rare diseases have an approved treatment option. The International Rare Diseases Research Consortium (IRDiRC) set up the multi-stakeholder Data Mining and Repurposing (DMR) Task Force to examine the potential of applying biomedical data mining strategies to identify new opportunities to use existing pharmaceutical compounds in new ways and to accelerate the pace of drug development for rare disease patients. In reviewing past successes of data mining for drug repurposing, and planning for future biomedical research capacity, the DMR Task Force identified four strategic infrastructure investment areas to focus on in order to accelerate rare disease research productivity and drug development: (1) improving the capture and sharing of self-reported patient data, (2) better integration of existing research data, (3) increasing experimental testing capacity, and (4) sharing of rare disease research and development expertise. Additionally, the DMR Task Force also recommended a number of strategies to increase data mining and repurposing opportunities for rare diseases research as well as the development of individualized and precision medicine strategies.


Biomedical Research , Data Mining , Drug Repositioning , Rare Diseases/drug therapy , Big Data , Databases, Factual , Humans
4.
Sci Signal ; 2(71): ra22, 2009 May 19.
Article En | MEDLINE | ID: mdl-19454649

Cellular signal transduction machinery integrates information from multiple inputs to actuate discrete cellular behaviors. Interaction complexity exists when an input modulates the output behavior that results from other inputs. To address whether this machinery is iteratively complex--that is, whether increasing numbers of inputs produce exponential increases in discrete cellular behaviors--we examined the modulated secretion of six cytokines from macrophages in response to up to five-way combinations of an agonist of Toll-like receptor 4, three cytokines, and conditions that activated the cyclic adenosine monophosphate pathway. Although all of the selected ligands showed synergy in paired combinations, few examples of nonadditive outputs were found in response to higher-order combinations. This suggests that most potential interactions are not realized and that unique cellular responses are limited to discrete subsets of ligands and pathways that enhance specific cellular functions.


Cytokines/metabolism , Macrophages/metabolism , Signal Transduction/physiology , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Animals , Cell Line , Chemokine CCL3/metabolism , Chemokine CCL5/metabolism , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/metabolism , Interferon-beta/pharmacology , Interleukin-10/metabolism , Interleukin-6/metabolism , Interleukin-6/pharmacology , Isoproterenol/pharmacology , Macrophages/cytology , Macrophages/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Sugar Acids/pharmacology , Time Factors , Transforming Growth Factor beta/pharmacology , Tumor Necrosis Factor-alpha/metabolism
5.
Science ; 322(5900): 438-42, 2008 Oct 17.
Article En | MEDLINE | ID: mdl-18927392

Statistical analyses of protein families reveal networks of coevolving amino acids that functionally link distantly positioned functional surfaces. Such linkages suggest a concept for engineering allosteric control into proteins: The intramolecular networks of two proteins could be joined across their surface sites such that the activity of one protein might control the activity of the other. We tested this idea by creating PAS-DHFR, a designed chimeric protein that connects a light-sensing signaling domain from a plant member of the Per/Arnt/Sim (PAS) family of proteins with Escherichia coli dihydrofolate reductase (DHFR). With no optimization, PAS-DHFR exhibited light-dependent catalytic activity that depended on the site of connection and on known signaling mechanisms in both proteins. PAS-DHFR serves as a proof of concept for engineering regulatory activities into proteins through interface design at conserved allosteric sites.


Flavoproteins/chemistry , Protein Engineering , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Allosteric Regulation , Allosteric Site , Binding Sites , Catalysis , Cryptochromes , Escherichia coli/enzymology , Flavoproteins/metabolism , Kinetics , Ligands , Light , Models, Molecular , NADP/metabolism , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Tetrahydrofolate Dehydrogenase/metabolism
6.
Nat Cell Biol ; 8(6): 571-80, 2006 Jun.
Article En | MEDLINE | ID: mdl-16699502

Cellular information processing requires the coordinated activity of a large network of intracellular signalling pathways. Cross-talk between pathways provides for complex non-linear responses to combinations of stimuli, but little is known about the density of these interactions in any specific cell. Here, we have analysed a large-scale survey of pathway interactions carried out by the Alliance for Cellular Signalling (AfCS) in RAW 264.7 macrophages. Twenty-two receptor-specific ligands were studied, both alone and in all pairwise combinations, for Ca2+ mobilization, cAMP synthesis, phosphorylation of many signalling proteins and for cytokine production. A large number of non-additive interactions are evident that are consistent with known mechanisms of cross-talk between pathways, but many novel interactions are also revealed. A global analysis of cross-talk suggests that many external stimuli converge on a relatively small number of interaction mechanisms to provide for context-dependent signalling.


Receptor Cross-Talk , Signal Transduction , Animals , Calcium Signaling , Cluster Analysis , Cyclic AMP/biosynthesis , Cytokines/biosynthesis , Ligands , Macrophages , Mice , Phosphorylation
...