Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 271: 115955, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237396

ABSTRACT

Perfluorooctanoic acid (PFOA) is a synthetic organofluoride surfactant associated with several toxic effects in humans and animals. Particularly, it has been observed that PFOA treatment of mice results in weight loss associated with recruited brown adipose tissue (BAT), including an increased amount of uncoupling protein 1 (UCP1). The molecular mechanism behind this BAT recruitment is presently unknown. To investigate the existence of possible cell-autonomous effects of PFOA, we treated primary cultures of brown and white (inguinal) adipocytes with PFOA, or with the non-fluorinated equivalent octanoate, or with vehicle, for 48 h (from day 5 to day 7 of differentiation). PFOA in itself increased the gene expression (mRNA levels) of UCP1 and carnitine palmitoyltransferase 1A (CPT1α) (thermogenesis-related genes) in both brown and white adipocytes. In addition, PFOA increased the expression of fatty acid binding protein 4 (FABP4) and peroxisome proliferator-activated receptor α (PPARα) (adipogenesis-related genes). Also the protein levels of UCP1 were increased in brown adipocytes exposed to PFOA. This increase was more due to an increase in the fraction of cells that expressed UCP1 than to an increase in UCP1 levels per cell. The PFOA-induced changes were even more pronounced under simultaneous adrenergic stimulation. Octanoate induced less pronounced effects on adipocytes than did PFOA. Thus, PFOA in itself increased the levels of thermogenic markers in brown and white adipocytes. This could enhance the energy metabolism of animals (and humans) exposed to the compound, resulting in a negative energy balance, leading to diminished fitness.


Subject(s)
Adipogenesis , Caprylates , Fluorocarbons , Humans , Mice , Animals , Caprylates/toxicity , Adipocytes, White , Thermogenesis/genetics
2.
Am J Physiol Endocrinol Metab ; 324(4): E358-E373, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36856189

ABSTRACT

Cold acclimation and pharmacological peroxisome proliferator-activated receptor γ (PPARγ) activation have each earlier been shown to recruit brown adipose tissue (BAT) and beige adipocytes thermogenic machinery, enhancing uncoupling protein 1 (UCP1)-mediated thermogenic capacity. We here investigated whether cold acclimation and PPARγ agonism combined have additive effects in inducing brown and beige adipocytes UCP1 content and whether this translates into a higher thermogenic capacity and energy expenditure. C57BL/6J mice treated or not with pioglitazone (30 mg/kg/day) were maintained at 21°C or exposed to cold (7°C) for 15 days and evaluated for thermogenic capacity, energy expenditure and interscapular BAT (iBAT) and inguinal white adipose tissue (iWAT) mass, morphology, UCP1 content and gene expression, glucose uptake and oxygen consumption. Cold acclimation and PPARγ agonism combined synergistically increased iBAT and iWAT total UCP1 content and mRNA levels of the thermogenesis-related proteins PGC1a, CIDEA, FABP4, GYK, PPARa, LPL, GLUTs (GLUT1 in iBAT and GLUT4 in iWAT), and ATG when compared to cold and pioglitazone individually. This translated into a stronger increase in body temperature in response to the ß3-adrenergic agonist CL316,243 and iBAT and iWAT respiration induced by succinate and pyruvate in comparison to that seen in either cold-acclimated or pioglitazone-treated mice. However, basal energy expenditure, BAT glucose uptake and glucose tolerance were not increased above that seen in cold-acclimated untreated mice. In conclusion, cold acclimation and PPARγ agonism combined induced a robust increase in brown and beige adipocytes UCP1 content and thermogenic capacity, much higher than each treatment individually. However, our findings enforce the concept that increases in total UCP1 do not innately lead to higher energy expenditure.NEW & NOTEWORTHY Cold acclimation and PPARγ agonism combined markedly increase brown and white adipose tissue total UCP1 content and mRNA levels of thermogenesis-related proteins. Higher UCP1 protein levels did not result in higher energy expenditure. The high thermogenic capacity induced by PPARγ agonism in cold-exposed animals markedly increases animals' body temperature in response to the ß3-adrenergic agonist CL316,243.


Subject(s)
Adipose Tissue, White , PPAR gamma , Mice , Animals , Pioglitazone/pharmacology , PPAR gamma/genetics , PPAR gamma/metabolism , Mice, Inbred C57BL , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Energy Metabolism/physiology , Acclimatization/physiology , Thermogenesis , Glucose/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Cold Temperature
3.
Front Nutr ; 8: 715859, 2021.
Article in English | MEDLINE | ID: mdl-34485365

ABSTRACT

The potential ability of nutritional compounds to induce or enhance the browning of adipocytes has attracted large interest as a workable means of combatting the obesity epidemic. Green tea compounds are discussed as such inducers of an enhanced thermogenic capacity and activity. However, the cell-autonomous effects of green tea compounds on adipocytes have until now only been demonstrated in adipogenic cell lines (3T3-L1 and 3T3-F442A), i.e., cells of undefined tissue lineage. In this study, we examine the ability of green tea compounds to cell-autonomously induce thermogenic recruitment in authentic brown and brite/beige adipocytes in vitro. In primary brown adipocytes, the green tea compounds suppressed basal UCP1 gene expression, and there was no positive interaction between the compounds and adrenergic stimulation. In white adipocytes, green tea compounds decreased both basal and norepinephrine-induced UCP1 mRNA levels, and this was associated with the suppression of cell differentiation, indicated by reduced lipogenic gene expression and lipid accumulation. A lack of interaction between rosiglitazone and green tea compounds suggests that the green tea compounds do not directly interact with the PPARγ pathway. We conclude that there is a negative effect of the green tea compounds on basal UCP1 gene expression, in both brown and white primary adipocytes, in contrast to the positive effects earlier reported from studies in adipogenic cell lines. We posit that the epigenetic status of the adipogenic cell lines is fundamentally different from that of genuine brown and white adipocytes, reflected, e.g., in several-thousand-fold differences in UCP1 gene expression levels. Thus, results obtained with adipogenic cell lines cannot unreservedly be extrapolated as being relevant for authentic effects in brown and white adipocytes. We suggest that this conclusion can be of general concern for studies attempting to establish physiologically relevant cell-autonomous effects.

SELECTION OF CITATIONS
SEARCH DETAIL