Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Oncol ; 12: 969396, 2022.
Article in English | MEDLINE | ID: mdl-36505884

ABSTRACT

Prostate cancer (PCa) accounts for more than 1 in 5 diagnoses and is the second cause of cancer-related deaths in men. Although PCa may be successfully treated, patients may undergo cancer recurrence and there is a need for new biomarkers to improve the prediction of prostate cancer recurrence and improve treatment. Our laboratory demonstrated that HLA-B-associated transcript 1 (BAT1) was differentially expressed in patients with high Gleason scores when compared to low Gleason scores. BAT1 is an anti-inflammatory gene but its role in PCa has not been identified. The objective of this study is to understand the role of BAT1 in prostate cancer. In vitro studies showed that BAT1 down-regulation increased cell migration and invasion. In contrast, BAT1 overexpression decreased cell migration and invasion. RT-PCR analysis showed differential expression of pro-inflammatory cytokines (TNF-α and IL-6) and cell adhesion and migration genes (MMP10, MMP13, and TIMPs) in BAT1 overexpressed cells when compared to BAT1 siRNA cells. Our in vivo studies demonstrated up-regulation of TNF-α, IL-6, and MMP10 in tumors developed from transfected BAT1 shRNA cells when compared to tumors developed from BAT1 cDNA cells. These findings indicate that BAT1 down-regulation modulates TNF-α and IL-6 expression which may lead to the secretion of MMP-10 and inhibition of TIMP2.

2.
Front Public Health ; 10: 889973, 2022.
Article in English | MEDLINE | ID: mdl-35570946

ABSTRACT

Real-time reverse transcription polymerase chain reaction (RT-PCR) assays are the most widely used molecular tests for the detection of SARS-CoV-2 and diagnosis of COVID-19 in clinical samples. PCR assays target unique genomic RNA regions to identify SARS-CoV-2 with high sensitivity and specificity. In general, assay development incorporates the whole genome sequences available at design time to be inclusive of all target species and exclusive of near neighbors. However, rapid accumulation of mutations in viral genomes during sustained growth in the population can result in signature erosion and assay failures, creating situational blind spots during a pandemic. In this study, we analyzed the signatures of 43 PCR assays distributed across the genome against over 1.6 million SARS-CoV-2 sequences. We present evidence of significant signature erosion emerging in just two assays due to mutations, while adequate sequence identity was preserved in the other 41 assays. Failure of more than one assay against a given variant sequence was rare and mostly occurred in the two assays noted to have signature erosion. Assays tended to be designed in regions with statistically higher mutations rates. in silico analyses over time can provide insights into mutation trends and alert users to the emergence of novel variants that are present in the population at low proportions before they become dominant. Such routine assessment can also potentially highlight false negatives in test samples that may be indicative of mutations having functional consequences in the form of vaccine and therapeutic failures. This study highlights the importance of whole genome sequencing and expanded real-time monitoring of diagnostic PCR assays during a pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sequence Alignment
3.
Lancet Infect Dis ; 19(12): 1371-1378, 2019 12.
Article in English | MEDLINE | ID: mdl-31588039

ABSTRACT

BACKGROUND: An alarming rise in reported Lassa fever cases continues in west Africa. Liberia has the largest reported per capita incidence of Lassa fever cases in the region, but genomic information on the circulating strains is scarce. The aim of this study was to substantially increase the available pool of data to help foster the generation of targeted diagnostics and therapeutics. METHODS: Clinical serum samples collected from 17 positive Lassa fever cases originating from Liberia (16 cases) and Guinea (one case) within the past decade were processed at the Liberian Institute for Biomedical Research using a targeted-enrichment sequencing approach, producing 17 near-complete genomes. An additional 17 Lassa virus sequences (two from Guinea, seven from Liberia, four from Nigeria, and four from Sierra Leone) were generated from viral stocks at the US Centers for Disease Control and Prevention (Atlanta, GA) from samples originating from the Mano River Union (Guinea, Liberia, and Sierra Leone) region and Nigeria. Sequences were compared with existing Lassa virus genomes and published Lassa virus assays. FINDINGS: The 23 new Liberian Lassa virus genomes grouped within two clades (IV.A and IV.B) and were genetically divergent from those circulating elsewhere in west Africa. A time-calibrated phylogeographic analysis incorporating the new genomes suggests Liberia was the entry point of Lassa virus into the Mano River Union region and estimates the introduction to have occurred between 300-350 years ago. A high level of diversity exists between the Liberian Lassa virus genomes. Nucleotide percent difference between Liberian Lassa virus genomes ranged up to 27% in the L segment and 18% in the S segment. The commonly used Lassa Josiah-MGB assay was up to 25% divergent across the target sites when aligned to the Liberian Lassa virus genomes. INTERPRETATION: The large amount of novel genomic diversity of Lassa virus observed in the Liberian cases emphasises the need to match deployed diagnostic capabilities with locally circulating strains and underscores the importance of evaluating cross-lineage protection in the development of vaccines and therapeutics. FUNDING: Defense Biological Product Assurance Office of the US Department of Defense and the Armed Forces Health Surveillance Branch and its Global Emerging Infections Surveillance and Response Section.


Subject(s)
Lassa Fever/epidemiology , Lassa Fever/virology , Lassa virus/genetics , Genome, Viral , Genomics/methods , Genotype , Humans , Lassa Fever/diagnosis , Lassa virus/classification , Liberia/epidemiology , Phylogeny , Public Health Surveillance
4.
Viruses ; 7(6): 3130-54, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26090727

ABSTRACT

Genome sequence analyses of the 2014 Ebola Virus (EBOV) isolates revealed a potential problem with the diagnostic assays currently in use; i.e., drifting genomic profiles of the virus may affect the sensitivity or even produce false-negative results. We evaluated signature erosion in ebolavirus molecular assays using an in silico approach and found frequent potential false-negative and false-positive results. We further empirically evaluated many EBOV assays, under real time PCR conditions using EBOV Kikwit (1995) and Makona (2014) RNA templates. These results revealed differences in performance between assays but were comparable between the old and new EBOV templates. Using a whole genome approach and a novel algorithm, termed BioVelocity, we identified new signatures that are unique to each of EBOV, Sudan virus (SUDV), and Reston virus (RESTV). Interestingly, many of the current assay signatures do not fall within these regions, indicating a potential drawback in the past assay design strategies. The new signatures identified in this study may be evaluated with real-time reverse transcription PCR (rRT-PCR) assay development and validation. In addition, we discuss regulatory implications and timely availability to impact a rapidly evolving outbreak using existing but perhaps less than optimal assays versus redesign these assays for addressing genomic changes.


Subject(s)
Ebolavirus/genetics , Genetic Drift , Genome, Viral , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/virology , Molecular Diagnostic Techniques/methods , Diagnostic Errors , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL