Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Oncogene ; 43(34): 2578-2594, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048659

ABSTRACT

Solid tumours have abnormally high intracellular [Na+]. The activity of various Na+ channels may underlie this Na+ accumulation. Voltage-gated Na+ channels (VGSCs) have been shown to be functionally active in cancer cell lines, where they promote invasion. However, the mechanisms involved, and clinical relevance, are incompletely understood. Here, we show that protein expression of the Nav1.5 VGSC subtype strongly correlates with increased metastasis and shortened cancer-specific survival in breast cancer patients. In addition, VGSCs are functionally active in patient-derived breast tumour cells, cell lines, and cancer-associated fibroblasts. Knockdown of Nav1.5 in a mouse model of breast cancer suppresses expression of invasion-regulating genes. Nav1.5 activity increases ATP demand and glycolysis in breast cancer cells, likely by upregulating activity of the Na+/K+ ATPase, thus promoting H+ production and extracellular acidification. The pH of murine xenograft tumours is lower at the periphery than in the core, in regions of higher proliferation and lower apoptosis. In turn, acidic extracellular pH elevates persistent Na+ influx through Nav1.5 into breast cancer cells. Together, these findings show positive feedback between extracellular acidification and the movement of Na+ into cancer cells which can facilitate invasion. These results highlight the clinical significance of Nav1.5 activity as a potentiator of breast cancer metastasis and provide further evidence supporting the use of VGSC inhibitors in cancer treatment.


Subject(s)
Breast Neoplasms , Glycolysis , NAV1.5 Voltage-Gated Sodium Channel , Neoplasm Metastasis , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Humans , Animals , Female , Mice , Cell Line, Tumor , Hydrogen-Ion Concentration , Feedback, Physiological , Sodium/metabolism , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness
2.
Nature ; 628(8009): 811-817, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38632397

ABSTRACT

Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.


Subject(s)
Butterflies , Genetic Introgression , Genetic Speciation , Hybridization, Genetic , Quantitative Trait Loci , Animals , Female , Male , Butterflies/anatomy & histology , Butterflies/classification , Butterflies/genetics , Gene Flow , Genetic Introgression/genetics , Genome, Insect/genetics , Mating Preference, Animal , Phenotype , Pigmentation/genetics , Quantitative Trait Loci/genetics , Reproductive Isolation , Selection, Genetic/genetics , Species Specificity , Sympatry/genetics , Wings, Animal/anatomy & histology , Wings, Animal/metabolism
3.
Front Plant Sci ; 13: 955985, 2022.
Article in English | MEDLINE | ID: mdl-36092419

ABSTRACT

Wheat yields have plateaued in the UK over the last 25 years, during which time most arable land has been annually cropped continuously with short rotations dominated by cereals. Arable intensification has depleted soil organic matter and biology, including mycorrhizas, which are affected by tillage, herbicides, and crop genotype. Here, we test whether winter wheat yields, mycorrhization, and shoot health can be improved simply by adopting less intensive tillage and adding commercial mycorrhizal inoculum to long-term arable fields, or if 3-year grass-clover leys followed direct drilling is more effective for biological regeneration of soil with reduced N fertiliser. We report a trial of mycorrhization, ear pathology, and yield performance of the parents and four double haploid lines from the Avalon x Cadenza winter wheat population in a long-term arable field that is divided into replicated treatment plots. These plots comprised wheat lines grown using ploughing or disc cultivation for 3 years, half of which received annual additions of commercial arbuscular mycorrhizal (AM) inoculum, compared to 3-year mown grass-clover ley plots treated with glyphosate and direct-drilled. All plots annually received 35 kg of N ha-1 fertiliser without fungicides. The wheat lines did not differ in mycorrhization, which averaged only 34% and 40% of root length colonised (RLC) in the ploughed and disc-cultivated plots, respectively, and decreased with inoculation. In the ley, RLC increased to 52%. Two wheat lines were very susceptible to a sooty ear mould, which was lowest in the ley, and highest with disc cultivation. AM inoculation reduced ear infections by >50% in the susceptible lines. In the ley, yields ranged from 7.2 to 8.3 t ha-1, achieving 92 to 106% of UK average wheat yield in 2018 (7.8 t ha-1) but using only 25% of average N fertiliser. Yields with ploughing and disc cultivation averaged only 3.9 and 3.4 t ha-1, respectively, with AM inoculum reducing yields from 4.3 to 3.5 t ha-1 in ploughed plots, with no effect of disc cultivation. The findings reveal multiple benefits of reintegrating legume-rich leys into arable rotations as part of a strategy to regenerate soil quality and wheat crop health, reduce dependence on nitrogen fertilisers, enhance mycorrhization, and achieve good yields.

4.
Traffic Inj Prev ; 23(7): 440-445, 2022.
Article in English | MEDLINE | ID: mdl-35877997

ABSTRACT

OBJECTIVE: While microscale pedestrian environment features such as sidewalks and crosswalks can affect pedestrian safety, it is challenging to assess microscale environment associated risk across locations or at scale. Addressing these challenges requires an efficient auditing protocol that can be used to assess frequencies of microscale environment features. For this reason, we developed an eight-item pedestrian environment virtual audit protocol and conducted a descriptive epidemiologic study of pedestrian injury in Washington State, USA. METHODS: We used data from police reports at pedestrian-automotive collision sites where the pedestrian was seriously injured or died. At each collision site, high school students participating in an online summer internship program virtually audited Google Street View imagery to assess the presence of microscale pedestrian environment features such as crosswalks and streetlighting. We assessed inter-rater reliability using Cohen's kappa and explored prevalence of eight microscale environment features in relation to injury severity and municipal boundaries. RESULTS: There were 2248 motor vehicle crashes eliciting police response and resulting in death or serious injury of a pedestrian in Washington State between January 1, 2015 and May 8, 2020. Of the crashes resulting in serious injury or death, 498 (22%) resulted in fatalities and 1840 (82%) occurred within municipal boundaries. Cohen's kappa scores for the eight pedestrian features that were audited ranged from 0.52 to 0.86. Audit results confirmed that features such as sidewalks and crosswalks were more common at collision sites within city limits. CONCLUSIONS: High school student volunteers with minimal training can reliably audit microscale pedestrian environments using limited resources.


Subject(s)
Pedestrians , Accidents, Traffic , Cities , Environment Design , Humans , Reproducibility of Results , Walking , Washington/epidemiology
5.
Mol Ecol ; 31(3): 959-977, 2022 02.
Article in English | MEDLINE | ID: mdl-34779079

ABSTRACT

Hybrids between species are often sterile or inviable. Hybrid unfitness usually evolves first in the heterogametic sex-a pattern known as Haldane's rule. The genetics of Haldane's rule have been extensively studied in species where the male is the heterogametic (XX/XY) sex, but its basis in taxa where the female is heterogametic (ZW/ZZ), such as Lepidoptera and birds, is largely unknown. Here, we analyse a new case of female hybrid sterility between geographic subspecies of Heliconius pardalinus. The two subspecies mate freely in captivity, but female F1 hybrids in both directions of cross are sterile. Sterility is due to arrested development of oocytes after they become differentiated from nurse cells, but before yolk deposition. We backcrossed fertile male F1 hybrids to parental females and mapped quantitative trait loci (QTLs) for female sterility. We also identified genes differentially expressed in the ovary as a function of oocyte development. The Z chromosome has a major effect, similar to the 'large X effect' in Drosophila, with strong epistatic interactions between loci at either end of the Z chromosome, and between the Z chromosome and autosomal loci on chromosomes 8 and 20. By intersecting the list of genes within these QTLs with those differentially expressed in sterile and fertile hybrids, we identified three candidate genes with relevant phenotypes. This study is the first to characterize hybrid sterility using genome mapping in the Lepidoptera and shows that it is produced by multiple complex epistatic interactions often involving the sex chromosome, as predicted by the dominance theory of Haldane's rule.


Subject(s)
Butterflies , Infertility, Female , Animals , Butterflies/genetics , Epistasis, Genetic , Female , Hybridization, Genetic , Male , Models, Genetic
6.
J Cell Physiol ; 235(4): 3950-3972, 2020 04.
Article in English | MEDLINE | ID: mdl-31612502

ABSTRACT

Ion channels can regulate the plasma membrane potential (Vm ) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav 1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav 1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav 1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment.


Subject(s)
Breast Neoplasms/genetics , Cellular Microenvironment/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , rac1 GTP-Binding Protein/genetics , Biosensing Techniques , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Movement/genetics , Cytoskeleton/chemistry , Cytoskeleton/genetics , Female , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , Humans , Ion Channels/genetics , Membrane Potentials/genetics , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Signal Transduction/genetics , rac1 GTP-Binding Protein/chemistry
7.
Oncotarget ; 8(26): 42382-42397, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28415575

ABSTRACT

Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.


Subject(s)
Ion Channel Gating , Potassium Channels/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Disease Models, Animal , Female , G2 Phase Cell Cycle Checkpoints/genetics , Gene Expression , Heterografts , Humans , Membrane Potentials , Mice , Mice, Knockout , Potassium Channels/agonists , Potassium Channels/genetics , Tumor Stem Cell Assay
8.
Mol Ecol ; 25(17): 4197-215, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27474484

ABSTRACT

Host-race formation in phytophagous insects is thought to provide the opportunity for local adaptation and subsequent ecological speciation. Studying gene expression differences amongst host races may help to identify phenotypes under (or resulting from) divergent selection and their genetic, molecular and physiological bases. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on numerous plants in the Fabaceae and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. In this study, we examine transcriptome-wide gene expression both in response to environment and across pea aphid races selected to cover the range of genetic divergence reported in this species complex. We identify changes in expression in response to host plant, indicating the importance of gene expression in aphid-plant interactions. Races can be distinguished on the basis of gene expression, and higher numbers of differentially expressed genes are apparent between more divergent races; these expression differences between host races may result from genetic drift and reproductive isolation and possibly divergent selection. Expression differences related to plant adaptation include a subset of chemosensory and salivary genes. Genes showing expression changes in response to host plant do not make up a large portion of between-race expression differences, providing confirmation of previous studies' findings that genes involved in expression differences between diverging populations or species are not necessarily those showing initial plasticity in the face of environmental change.


Subject(s)
Adaptation, Physiological/genetics , Aphids/genetics , Fabaceae , Genetics, Population , Animals , Environment , Genetic Drift , Phenotype , Reproductive Isolation , Selection, Genetic , Transcriptome
9.
Oncotarget ; 6(32): 32914-29, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26452220

ABSTRACT

Voltage-gated Na+ channels (VGSCs) mediate action potential firing and regulate adhesion and migration in excitable cells. VGSCs are also expressed in cancer cells. In metastatic breast cancer (BCa) cells, the Nav1.5 α subunit potentiates migration and invasion. In addition, the VGSC-inhibiting antiepileptic drug phenytoin inhibits tumor growth and metastasis. However, the functional activity of Nav1.5 and its specific contribution to tumor progression in vivo has not been delineated. Here, we found that Nav1.5 is up-regulated at the protein level in BCa compared with matched normal breast tissue. Na+ current, reversibly blocked by tetrodotoxin, was retained in cancer cells in tumor tissue slices, thus directly confirming functional VGSC activity in vivo. Stable down-regulation of Nav1.5 expression significantly reduced tumor growth, local invasion into surrounding tissue, and metastasis to liver, lungs and spleen in an orthotopic BCa model. Nav1.5 down-regulation had no effect on cell proliferation or angiogenesis within the in tumors, but increased apoptosis. In vitro, Nav1.5 down-regulation altered cell morphology and reduced CD44 expression, suggesting that VGSC activity may regulate cellular invasion via the CD44-src-cortactin signaling axis. We conclude that Nav1.5 is functionally active in cancer cells in breast tumors, enhancing growth and metastatic dissemination. These findings support the notion that compounds targeting Nav1.5 may be useful for reducing metastasis.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/physiology , Female , Heterografts , Humans , Mice , Mice, Transgenic , Neoplasm Metastasis
10.
Mol Cancer ; 14: 13, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25623198

ABSTRACT

BACKGROUND: Voltage-gated Na(+) channels (VGSCs) are heteromeric protein complexes containing pore-forming α subunits and smaller, non-pore-forming ß subunits. VGSCs are classically expressed in electrically excitable cells, e.g. neurons. VGSCs are also expressed in tumour cells, including breast cancer (BCa) cells, where they enhance cellular migration and invasion. However, despite extensive work defining in detail the molecular mechanisms underlying the expression of VGSCs and their pro-invasive role in cancer cells, there has been a notable lack of clinically relevant in vivo data exploring their value as potential therapeutic targets. FINDINGS: We have previously reported that the VGSC-blocking antiepileptic drug phenytoin inhibits the migration and invasion of metastatic MDA-MB-231 cells in vitro. The purpose of the present study was to establish whether VGSCs might be viable therapeutic targets by testing the effect of phenytoin on tumour growth and metastasis in vivo. We found that expression of Nav1.5, previously detected in MDA-MB-231 cells in vitro, was retained on cells in orthotopic xenografts. Treatment with phenytoin, at a dose equivalent to that used to treat epilepsy (60 mg/kg; daily), significantly reduced tumour growth, without affecting animal weight. Phenytoin also reduced cancer cell proliferation in vivo and invasion into surrounding mammary tissue. Finally, phenytoin significantly reduced metastasis to the liver, lungs and spleen. CONCLUSIONS: This is the first study showing that phenytoin reduces breast tumour growth and metastasis in vivo. We propose that pharmacologically targeting VGSCs, by repurposing antiepileptic or antiarrhythmic drugs, should be further studied as a potentially novel anti-cancer therapy.


Subject(s)
Anticonvulsants/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Phenytoin/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Animals , Anticonvulsants/administration & dosage , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , Humans , Mice , Neoplasm Metastasis , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Phenytoin/administration & dosage , Sodium Channel Blockers/administration & dosage , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
11.
Int J Cancer ; 135(10): 2338-51, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-24729314

ABSTRACT

Voltage-gated Na(+) channels (VGSCs) are heteromeric proteins composed of pore-forming α subunits and smaller ß subunits. The ß subunits are multifunctional channel modulators and are members of the immunoglobulin superfamily of cell adhesion molecules (CAMs). ß1, encoded by SCN1B, is best characterized in the central nervous system (CNS), where it plays a critical role in regulating electrical excitability, neurite outgrowth and migration during development. ß1 is also expressed in breast cancer (BCa) cell lines, where it regulates adhesion and migration in vitro. In the present study, we found that SCN1B mRNA/ß1 protein were up-regulated in BCa specimens, compared with normal breast tissue. ß1 upregulation substantially increased tumour growth and metastasis in a xenograft model of BCa. ß1 over-expression also increased vascularization and reduced apoptosis in the primary tumours, and ß1 over-expressing tumour cells had an elongate morphology. In vitro, ß1 potentiated outgrowth of processes from BCa cells co-cultured with fibroblasts, via trans-homophilic adhesion. ß1-mediated process outgrowth in BCa cells required the presence and activity of fyn kinase, and Na(+) current, thus replicating the mechanism by which ß1 regulates neurite outgrowth in CNS neurons. We conclude that when present in breast tumours, ß1 enhances pathological growth and cellular dissemination. This study is the first demonstration of a functional role for ß1 in tumour growth and metastasis in vivo. We propose that ß1 warrants further study as a potential biomarker and targeting ß1-mediated adhesion interactions may have value as a novel anti-cancer therapy.


Subject(s)
Breast Neoplasms/pathology , Liver Neoplasms/secondary , Lung Neoplasms/secondary , Neurites/pathology , Voltage-Gated Sodium Channel beta-1 Subunit/metabolism , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Blotting, Western , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Female , Humans , Immunoenzyme Techniques , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Nude , Middle Aged , Neurites/metabolism , Neurons/metabolism , Neurons/pathology , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Voltage-Gated Sodium Channel beta-1 Subunit/genetics , Xenograft Model Antitumor Assays
12.
Appl Environ Microbiol ; 77(14): 4770-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21622777

ABSTRACT

The processes responsible for producing and maintaining the diversity of natural arbuscular mycorrhizal (AM) fungal communities remain largely unknown. We used natural CO(2) springs (mofettes), which create hypoxic soil environments, to determine whether a long-term, directional, abiotic selection pressure could change AM fungal community structure and drive the selection of particular AM fungal phylotypes. We explored whether those phylotypes that appear exclusively in hypoxic soils are local specialists or widespread generalists able to tolerate a range of soil conditions. AM fungal community composition was characterized by cloning, restriction fragment length polymorphism typing, and the sequencing of small subunit rRNA genes from roots of four plant species growing at high (hypoxic) and low (control) geological CO(2) exposure. We found significant levels of AM fungal community turnover (ß diversity) between soil types and the numerical dominance of two AM fungal phylotypes in hypoxic soils. Our results strongly suggest that direct environmental selection acting on AM fungi is a major factor regulating AM fungal communities and their phylogeographic patterns. Consequently, some AM fungi are more strongly associated with local variations in the soil environment than with their host plant's distribution.


Subject(s)
Adaptation, Physiological , Microbial Consortia/physiology , Mycorrhizae/physiology , Anaerobiosis , Carbon Dioxide , Fresh Water , Molecular Sequence Data , Mycorrhizae/genetics , Phylogeny , Plants/microbiology , Polymorphism, Restriction Fragment Length , RNA, Ribosomal/genetics , Soil , Soil Microbiology
13.
New Phytol ; 190(3): 794-804, 2011 May.
Article in English | MEDLINE | ID: mdl-21294738

ABSTRACT

• Understanding the dynamics of rhizosphere microbial communities is essential for predicting future ecosystem function, yet most research focuses on either spatial or temporal processes, ignoring combined spatio-temporal effects. • Using pyrosequencing, we examined the spatio-temporal dynamics of a functionally important community of rhizosphere microbes, the arbuscular mycorrhizal (AM) fungi. We sampled AM fungi from plant roots growing in a temperate grassland in a spatially explicit manner throughout a year. • Ordination analysis of the AM fungal assemblages revealed significant temporal changes in composition and structure. Alpha and beta diversity tended to be negatively correlated with the climate variables temperature and sunshine hours. Higher alpha diversity during colder periods probably reflects more even competitive interactions among AM fungal species under limited carbon availability, a conclusion supported by analysis of beta diversity which highlights how resource limitation may change localized spatial dynamics. • Results reveal distinct AM fungal assemblages in winter and summer at this grassland site. A seasonally changing supply of host-plant carbon, reflecting changes in temperature and sunshine hours, may be the driving force in regulating the temporal dynamics of AM fungal communities. Climate change effects on seasonal temperatures may therefore substantially alter future AM fungal community dynamics and ecosystem functioning.


Subject(s)
Biodiversity , High-Throughput Nucleotide Sequencing/methods , Mycorrhizae/genetics , Seasons , Temperature , Principal Component Analysis , Time Factors
14.
ISME J ; 4(3): 337-45, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19924158

ABSTRACT

Most attempts to identify the processes that structure natural communities have focused on conspicuous macroorganisms whereas the processes responsible for structuring microbial communities remain relatively unknown. Two main theories explaining these processes have emerged; niche theory, which highlights the importance of deterministic processes, and neutral theory, which focuses on stochastic processes. We examined whether neutral or niche-based mechanisms best explain the composition and structure of communities of a functionally important soil microbe, the arbuscular mycorrhizal (AM) fungi. Using molecular techniques, we surveyed AM fungi from 425 individual plants of 28 plant species along a soil pH gradient. There was evidence that both niche and neutral processes structured this community. Species abundances fitted the zero-sum multinomial distribution and there was evidence of dispersal limitation, both indicators of neutral processes. However, we found stronger support that niche differentiation based on abiotic soil factors, primarily pH, was structuring the AM fungal community. Host plant species affected AM fungal community composition negligibly compared to soil pH. We conclude that although niche partitioning was the primary mechanism regulating the composition and diversity of natural AM fungal communities, these communities are also influenced by stochastic-neutral processes. This study represents one of the most comprehensive investigations of community-level processes acting on soil microbes; revealing a community that although influenced by stochastic processes, still responded in a predictable manner to a major abiotic niche axis, soil pH. The strong response to environmental factors of this community highlights the susceptibility of soil microbes to environmental change.


Subject(s)
Biodiversity , Fungi/classification , Fungi/growth & development , Mycorrhizae/growth & development , Plants/microbiology , Soil Microbiology , DNA Fingerprinting , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Hydrogen-Ion Concentration , Plant Roots/microbiology , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 18S/genetics , Soil/analysis
15.
Protist ; 161(1): 55-70, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19656720

ABSTRACT

Mycetozoa, characterized by spore-bearing fruiting bodies, are the most diverse Amoebozoa. They traditionally comprise three taxa: Myxogastria, Dictyostelia and Protostelia. Myxogastria and Dictyostelia typically have multispored fruiting bodies, but controversy exists whether they are related or arose independently from different unicellular ancestors. Protostelid slime moulds, with single-spored fruiting bodies, are possible evolutionary intermediates between them and typical amoebae, but have received almost no molecular study. Protostelid morphology is so varied that they might not be monophyletic. We therefore provide 38 new 18S rRNA and/or EF-1alpha gene sequences from Mycetozoa and related species, including four protostelids and the enigmatic Ceratiomyxa fruticulosa. Phylogenetic analyses support the monophyly of Dictyostelia, Myxogastria, and Ceratiomyxa (here collectively called "macromycetozoa") and show that protostelids are Amoebozoa, mostly related to non-fruiting amoebae of the class Variosea, but may not be monophyletic; some phylogenetic relationships remain poorly resolved. Ceratiomyxa fruticulosa, originally regarded as a myxogastrid, but in recent decades included in Protostelia, is a deeply diverging sister to Myxogastria. The protostelids studied here plus varipodid amoebae and the flagellates Phalansterium and Multicilia together probably form the outgroup to macromycetozoa plus Archamoebae. Thus protostelids and Variosea are especially significant for understanding the evolutionary transition from solitary amoebae to macromycetozoa.


Subject(s)
Evolution, Molecular , Mycetozoa/classification , Mycetozoa/genetics , Phylogeny , Animals , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Mycetozoa/cytology , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
16.
Protist ; 159(4): 579-90, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18621583

ABSTRACT

The choanoflagellates are a ubiquitous group of nanoflagellates and the sister group of Metazoa. Examination of the initial draft version of the first choanoflagellate genome, that of Monosiga brevicollis, reveals the presence of three novel families of long terminal repeat (LTR) retrotransposons and an apparent absence of non-LTR retrotransposons and transposons. One of the newly discovered LTR families falls in the chromovirus clade of the Ty3/gypsy group while the other two families are closely related members of the Ty1/copia group. Examination of EST sequences and nucleotide analyses show that all three families are transcriptionally active and potentially functional within the genome of M. brevicollis.


Subject(s)
Eukaryota/genetics , Genome, Protozoan , Retroelements/genetics , Terminal Repeat Sequences/genetics , Amino Acid Sequence , Animals , Base Sequence , Molecular Sequence Data , Protein Structure, Tertiary
17.
Eur J Protistol ; 44(3): 227-37, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18403187

ABSTRACT

A new genus, Helgoeca gen. nov., has been designated to accommodate a nudiform loricate choanoflagellate (American Type Culture Collection strain ATCC 50073) that was incorrectly attributed to the tectiform genus Acanthoecopsis (=Acanthocorbis). The first indication that this species might be nudiform came from a four-gene phylogeny of the choanoflagellates which recovered ATCC 50073 within a strongly supported monophyletic clade comprising two other nudiform taxa. Fortunately an isolate of the species in question was available from the ATCC and when observed in rapidly growing culture it was immediately apparent that this species divided with the production of 'naked' motile cells; a typically nudiform character. The beaker-shaped lorica of this species consists of an outer layer of approximately 11 longitudinal costae, which terminate anteriorly as spines, and an equal or larger number of helical costae, with a left-handed conformation, each of which terminates anteriorly adjacent to the base of a spine. The pattern of costae in this species is indistinguishable from that of Acanthocorbis nana Thomsen and for this reason A. nana has been transferred to the new genus Helgoeca gen. nov., as the type species.


Subject(s)
Eukaryota/classification , Animals , DNA, Protozoan/analysis , DNA, Ribosomal/analysis , Eukaryota/genetics , Eukaryota/ultrastructure , Genes, rRNA , HSP90 Heat-Shock Proteins/genetics , Molecular Sequence Data , Phylogeny , Protozoan Proteins/genetics , Sequence Analysis, DNA , Species Specificity , Tubulin/genetics
18.
Science ; 314(5799): 661-3, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17068267

ABSTRACT

The social amoebas (Dictyostelia) display conditional multicellularity in a wide variety of forms. Despite widespread interest in Dictyostelium discoideum as a model system, almost no molecular data exist from the rest of the group. We constructed the first molecular phylogeny of the Dictyostelia with parallel small subunit ribosomal RNA and a-tubulin data sets, and we found that dictyostelid taxonomy requires complete revision. A mapping of characters onto the phylogeny shows that the dominant trend in dictyostelid evolution is increased size and cell type specialization of fruiting structures, with some complex morphologies evolving several times independently. Thus, the latter may be controlled by only a few genes, making their underlying mechanisms relatively easy to unravel.


Subject(s)
Dictyosteliida/classification , Dictyosteliida/cytology , Phylogeny , Animals , Biological Evolution , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Dictyosteliida/genetics , Dictyosteliida/growth & development , Dictyostelium/classification , Dictyostelium/cytology , Dictyostelium/genetics , Dictyostelium/growth & development , Genes, Protozoan , Molecular Sequence Data , RNA, Ribosomal/genetics , Spores, Protozoan/cytology , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL