Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Curr Microbiol ; 81(7): 208, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833191

ABSTRACT

Diabetes mellitus (DM) leads to impaired innate and adaptive immune responses. This renders individuals with DM highly susceptible to microbial infections such as COVID-19, tuberculosis and melioidosis. Melioidosis is a tropical disease caused by the bacterial pathogen Burkholderia pseudomallei, where diabetes is consistently reported as the most significant risk factor associated with the disease. Type-2 diabetes is observed in 39% of melioidosis patients where the risk of infection is 13-fold higher than non-diabetic individuals. B. pseudomallei is found in the environment and is an opportunistic pathogen in humans, often exhibiting severe clinical manifestations in immunocompromised patients. The pathophysiology of diabetes significantly affects the host immune responses that play a critical role in fighting the infection, such as leukocyte and neutrophil impairment, macrophage and monocyte inhibition and natural killer cell dysfunction. These defects result in delayed recruitment as well as activation of immune cells to target the invading B. pseudomallei. This provides an advantage for the pathogen to survive and adapt within the immunocompromised diabetic patients. Nevertheless, knowledge gaps on diabetes-infectious disease comorbidity, in particular, melioidosis-diabetes comorbidity, need to be filled to fully understand the dysfunctional host immune responses and adaptation of the pathogen under diabetic conditions to guide therapeutic options.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Melioidosis/microbiology , Melioidosis/immunology , Humans , Burkholderia pseudomallei/immunology , Diabetes Complications/microbiology , Diabetes Mellitus/immunology , Diabetes Mellitus/microbiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/microbiology , Immunocompromised Host
2.
Commun Biol ; 6(1): 920, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684342

ABSTRACT

Burkholderia pseudomallei is a highly versatile pathogen with ~25% of its genome annotated to encode hypothetical proteins. One such hypothetical protein, BPSL1038, is conserved across seven bacterial genera and 654 Burkholderia spp. Here, we present a 1.55 Å resolution crystal structure of BPSL1038. The overall structure folded into a modified ßαßßαßα ferredoxin fold similar to known Cas2 nucleases. The Cas2 equivalent catalytic aspartate (D11) pairs are conserved in BPSL1038 although B. pseudomallei has no known CRISPR associated system. Functional analysis revealed that BPSL1038 is a nuclease with endonuclease activity towards double-stranded DNA. The DNase activity is divalent ion independent and optimum at pH 6. The concentration of monovalent ions (Na+ and K+) is crucial for nuclease activity. An active site with a unique D11(X20)SST motif was identified and proposed for BPSL1038 and its orthologs. Structure modelling indicates the catalytic role of the D11(X20)SST motif and that the arginine residues R10 and R30 may interact with the nucleic acid backbone. The structural similarity of BPSL1038 to Cas2 proteins suggests that BPSL1038 may represent a sub-family of nucleases that share a common ancestor with Cas2.


Subject(s)
Burkholderia pseudomallei , Burkholderia pseudomallei/genetics , Arginine , Aspartic Acid , Catalysis , Endonucleases
3.
PLoS One ; 18(3): e0283147, 2023.
Article in English | MEDLINE | ID: mdl-36943850

ABSTRACT

The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Plant Extracts/chemistry , Mitragyna/chemistry , Indole Alkaloids/analysis , Plant Leaves/metabolism , Metabolomics
4.
J Microbiol Biotechnol ; 33(1): 15-27, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36451302

ABSTRACT

The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.


Subject(s)
Anti-Infective Agents , Burkholderia pseudomallei , Melioidosis , Humans , Burkholderia pseudomallei/genetics , Melioidosis/microbiology , Biofilms , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Insect Mol Biol ; 32(2): 143-159, 2023 04.
Article in English | MEDLINE | ID: mdl-36454188

ABSTRACT

In Southeast Asia, Conopomorpha cramerella (Snellen) which is commonly known as the cocoa pod borer (CPB) moth has been identified as the most detrimental pest of Theobroma cacao L. Apart from the various side effects on human health and non-target organisms, heavily relying on synthetic pyrethroid insecticides to control CPB infestations also increases the environmental contamination risks. Thus, developing biorational insecticides that minimally affect the non-target organism and environment by targeting the insect growth regulation process is needed to manage the pest population. In insects, juvenile hormones (JH) regulate critical biological events, especially metamorphosis, development and reproduction. Since the physiological roles of JH III vary among different organisms, the biochemical properties, especially substrate specificity and analogue inhibition, may also be different. Therefore, studies on the JH III biosynthetic pathway enzymes in both plants and insects are beneficial to discover more effective analogues. Bioinformatic analysis and biochemical characterization of a NADP+ -dependent farnesol dehydrogenase, an intermediate enzyme of the JH III pathway, from C. cramerella (CcFolDH), were described in this study. In addition, the farnesol analogues that may act as a potent analogue inhibitor for CcFolDH ware determined using in vitro enzymatic study. The phylogenetic analysis indicated that CcFolDH shared a close phylogenetic relationship to the honeybee's short-chain dehydrogenase/reductase. The 27 kDa CcFolDH has an NADP(H) binding domain with a typical Rossmann fold and is likely a homotetrameric protein in the solution. The enzyme had a greater preference for substrate trans, trans-farnesol and coenzyme NADP+ . In terms of analogue inhibitor inhibition, hexahydroxyfarnesyl acetone showed the highest inhibition (the lowest Ki ) compared to other farnesol analogues. Thus, hexahydroxyfarnesyl acetone would serve as the most potent active ingredient for future biorational pesticide management for C. cramerella infestation. Based on the bioinformatic analyses and biochemical characterizations conducted in this research, we proposed that rCcFolDH differs slightly from other reported farnesol dehydrogenases in terms of molecular weight, substrate preference, coenzymes utilization and analogue inhibitors selection.


Subject(s)
Farnesol , Insecticides , Humans , Animals , Farnesol/metabolism , Phylogeny , Acetone , NADP , Insecta/metabolism
6.
Plant Physiol Biochem ; 183: 23-35, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35537348

ABSTRACT

Neprosin was first discovered in the insectivorous tropical pitcher plants of Nepenthes species as a novel protease with prolyl endopeptidase (PEP) activity. Neprosin has two uncharacterized domains of neprosin activation peptide and neprosin. A previous study has shown neprosin activity in hydrolyzing proline-rich gliadin, a gluten component that triggers celiac disease. In this study, we performed in silico structure-function analysis to investigate the catalytic mechanism of neprosin. Neprosin sequences lack the catalytic triad and motifs of PEP family S9. Protein structures of neprosins from Nepenthes × ventrata (NvNpr) and N. rafflesiana (NrNpr1) were generated by ab initio methods and comparatively assessed to obtain high-quality models. Structural alignment of models to experimental structures in the Protein Data Bank (PDB) found a high structural similarity to glutamic peptidases. Further investigations reveal other resemblances to the glutamic peptidases with low optimum pH that activates the enzyme via autoproteolysis for maturation. Two highly conserved glutamic acid residues, which are stable according to the molecular dynamics simulation, can be found at the active site of the substrate cleft. Protein docking demonstrated that mature neprosins bind well with potent antigen αI-gliadin at the putative active site. Taken together, neprosins represent a new glutamic peptidase family, with a putative catalytic dyad of two glutamic acids. This study illustrates a hypothetical enzymatic mechanism of the neprosin family and demonstrates the useful application of an accurate ab initio protein structure prediction in the structure-function study of a novel protein family.


Subject(s)
Gliadin , Peptide Hydrolases , Catalytic Domain , Gliadin/metabolism , Peptide Hydrolases/metabolism , Peptides/chemistry , Proteolysis
7.
Comput Biol Chem ; 96: 107620, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34971900

ABSTRACT

Angiotensin-converting enzyme (ACE) regulates blood pressure and has been implicated in several conditions including lung injury, fibrosis and Alzheimer's disease. Medicinal mushroom Ganordema lucidum (Reishi) cystathionine beta-synthase (GlCBS) was previously reported to possess ACE inhibitory activities. However, the inhibitory mechanism of CBS protein remains unreported. Therefore, this study integrates in silico sequencing, structural and functional based-analysis, protein modelling, molecular docking and binding affinity calculation to elucidate the inhibitory mechanism of GlCBS and Lignosus rhinocerus (Tiger milk mushroom) CBS protein (LrCBS) towards ACE. In silico analysis indicates that CBSs from both mushrooms share high similarities in terms of physical properties, structural properties and domain distribution. Protein-protein docking analysis revealed that both GlCBS and LrCBS potentially modulate the C-terminal domain of ACE (C-ACE) activity via regulation of chloride activation and/or prevention of substrate entry. GICBS and LrCBS were also shown to interact with ACE at the same region that presumably inhibits the function of ACE.


Subject(s)
Agaricales/enzymology , Cystathionine beta-Synthase/metabolism , Peptidyl-Dipeptidase A/metabolism , Humans , Models, Molecular
8.
Sci Rep ; 11(1): 20649, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667248

ABSTRACT

Actinoporins are a family of α-pore-forming toxins (α-PFTs) that have been identified in sea anemones. Recently, a freshwater Hydra Actinoporin-Like Toxin (HALT) gene family was found in Hydra magnipapillata. Unlike sea anemone actinoporins that use sphingomyelin as their main recognition target, the HALTs proteins may recognise alternative lipid molecules as their target. To unveil the structural insights into lipid preference of HALTs protein as compared to sea anemone actinoporins, we have determined the first crystal structure of actinoporin-like toxin, HALT-1 at 1.43 Å resolution with an acetylated lysine residue K76. Despite the overall structure of HALT-1 sharing a high structural similarity to sea anemone actinoporins, the atomic resolution structure revealed several unique structural features of HALT-1 that may influence the lipid preference and oligomerisation interface. The HALT-1 contains a RAG motif in place of the highly conserved RGD motif found in sea anemone actinoporins. The RAG motif contributed to a sharper ß9-ß10 turn, which may sway its oligomerisation interface in comparison to sea anemone actinoporins. In the lipid-binding region, the HALT-1 contains a shorter α2 helix and a longer α2-ß9 loop due to deletion and subsequently an insertion of five amino acid residues in comparison to the sea anemone actinoporins. Structure comparison and molecular docking analysis further revealed that the HALT-1 lipid-binding site may favour sphingolipids with sulfate or phosphate head group more than the sphingomyelin. The structure of HALT-1 reported here provides a new insight for a better understanding of the evolution and lipid recognition mechanism of actinoporin.

9.
Int J Mol Sci ; 22(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34445426

ABSTRACT

The causative agent of white tail disease (WTD) in the giant freshwater prawn is Macrobrachium rosenbergii nodavirus (MrNV). The recombinant capsid protein (CP) of MrNV was previously expressed in Escherichia coli, and it self-assembled into icosahedral virus-like particles (VLPs) with a diameter of approximately 30 nm. Extensive studies on the MrNV CP VLPs have attracted widespread attention in their potential applications as biological nano-containers for targeted drug delivery and antigen display scaffolds for vaccine developments. Despite their advantageous features, the recombinant MrNV CP VLPs produced in E. coli are seriously affected by protease degradations, which significantly affect the yield and stability of the VLPs. Therefore, the aim of this study is to enhance the stability of MrNV CP by modulating the protease degradation activity. Edman degradation amino acid sequencing revealed that the proteolytic cleavage occurred at arginine 26 of the MrNV CP. The potential proteases responsible for the degradation were predicted in silico using the Peptidecutter, Expasy. To circumvent proteolysis, specific protease inhibitors (PMSF, AEBSF and E-64) were tested to reduce the degradation rates. Modulation of proteolytic activity demonstrated that a cysteine protease was responsible for the MrNV CP degradation. The addition of E-64, a cysteine protease inhibitor, remarkably improved the yield of MrNV CP by 2.3-fold compared to the control. This innovative approach generates an economical method to improve the scalability of MrNV CP VLPs using individual protease inhibitors, enabling the protein to retain their structural integrity and stability for prominent downstream applications including drug delivery and vaccine development.


Subject(s)
Capsid Proteins/genetics , Capsid Proteins/metabolism , Cysteine Proteases/metabolism , Nodaviridae/metabolism , Palaemonidae/virology , Animals , Binding Sites , Capsid Proteins/chemistry , Computer Simulation , Drug Development , Gene Expression Regulation, Viral , Protease Inhibitors/pharmacology , Proteolysis/drug effects , Sequence Analysis, Protein
10.
Plant Physiol Biochem ; 161: 143-155, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33588320

ABSTRACT

The juvenile hormones (JH) in plants are suggested to act as a form of plant defensive strategy especially against insect herbivory. The oxidation of farnesol to farnesoic acid is a key step in the juvenile hormone biosynthesis pathway. We herein present the purification and characterisation of the recombinant Theobroma cacao farnesol dehydrogenase enzyme that catalyses oxidation of farnesol to farnesal. The recombinant enzyme was purified to apparent homogeneity by affinity chromatography. The purified enzyme was characterised in terms of its deduced amino acid sequences, phylogeny, substrate specificity, kinetic parameters, structural modeling, and docking simulation. The phylogenetic analysis indicated that the T. cacao farnesol dehydrogenase (TcFolDH) showed a close relationship with A. thaliana farnesol dehydrogenase gene. The TcFolDH monomer had a large N-terminal domain which adopted a typical Rossmann-fold, harboring the GxxGxG motif (NADP(H)-binding domain) and a small C-terminal domain. The enzyme was a homotrimer comprised of subunits with molecular masses of 36 kDa. The TcFolDH was highly specific to NADP+ as coenzyme. The substrate specificity studies showed trans, trans-farnesol was the most preferred substrate for the TcFolDH, suggesting that the purified enzyme was a NADP+-dependent farnesol dehydrogenase. The docking of trans, trans-farnesol and NADP+ into the active site of the enzyme showed the important residues, and their interactions involved in the substrate and coenzyme binding of TcFolDH. Considering the extensive involvement of JH in both insects and plants, an in-depth knowledge on the recombinant production of intermediate enzymes of the JH biosynthesis pathway could help provide a potential method for insect control.


Subject(s)
Cacao , Computational Biology , NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases , Phylogeny
11.
Microb Biotechnol ; 14(4): 1422-1432, 2021 07.
Article in English | MEDLINE | ID: mdl-33421319

ABSTRACT

To set a benchmark in fungal growth rate, a differential analysis of prototrophic Aspergillus fumigatus AR04 with three ascomycetes applied in > 103 t year-1 scale was performed, i.e. Ashbya gosspyii (riboflavin), Aspergillus niger (citric acid) and Aspergillus oryzae (food-processing). While radial colony growth decreased 0.5-fold when A. gossypii was cultivated at 40°C instead of 28°C, A. fumigatus AR04 responded with 1.7-fold faster hyphal growth. A. niger and A. oryzae formed colonies at 40°C, but not at 43°C. Moreover, all A. fumigatus strains tested grew even at 49°C. In chemostat experiments, A. fumigatus AR04 reached steady state at a dilution rate of 0.7 h-1 at 40°C, 120% more than reported for A. gossypii at 28°C. To study mycelial growth rates under unlimited conditions, carbon dioxide increase rates were calculated from concentrations detected online in the exhaust of batch fermentations for 3 h only. All rates calculated suggest that A. fumigatus AR04 approximates Arrhenius' rule when comparing short cultivations at 30°C with those at 40°C. Linearization of the exponential phase and comparison of the slopes revealed an increase to 192% by the 10°C up-shift.


Subject(s)
Aspergillus fumigatus , Aspergillus niger , Culture Media , Fermentation , Temperature
12.
Sci Rep ; 11(1): 921, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441720

ABSTRACT

House dust mites (HDMs) are one of the major causes of allergies in the world. The group 23 allergen, Der p 23, from Dermatophagoides pteronyssinus, is a major allergen amongst HDM-sensitized individuals. This study aims to determine the specific immunoglobulin E (sIgE) binding frequency and IgE-binding residues of recombinant Der p 23 (rDer p 23) allergen amongst a cohort of consecutive atopic individuals in a tropical region. We performed site-directed mutagenesis and carried out immuno-dot blot assays using 65 atopic sera. The immuno-dot blot assays results indicated that the two residues K44 and E46 which are located at the N-terminal region are the major IgE-binding residues. The rDerp-23 sIgE titers are strongly correlated to the number of IgE-binding residues for rDer p 23 (P < 0.001). Atopic individuals who were only sensitized to HDM have a significantly higher number of IgE-binding residues than the individuals who were polysensitized to HDM and other crude allergens (P < 0.05). Individuals with allergic multimorbidity and moderate-to-severe allergic rhinitis also have a higher number of IgE-binding residues compared to those with single allergic disease and mild allergic rhinitis. The results prompt us to hypothesize that the individuals who have a higher number of IgE-binding residues may face a bigger challenge to be treated through immunotherapy due to the complexity in designing an effective hypoallergen with a high number of IgE-binding residues. We propose that the development of a refined molecular diagnostic assay, which includes alanine substitution of surface-exposed residues could be a more precise diagnostic strategy to identify all the IgE-binding residues of a major allergen for an atopic individual and the development could be another new dimension in allergy diagnosis and allergen immunotherapy treatment.


Subject(s)
Antigens, Dermatophagoides/immunology , Hypersensitivity/immunology , Pyroglyphidae/immunology , Adult , Allergens/immunology , Animals , Antigens, Dermatophagoides/metabolism , Arthropod Proteins/immunology , Arthropod Proteins/metabolism , Dermatophagoides pteronyssinus/immunology , Dust/immunology , Female , Humans , Hypersensitivity, Immediate , Immunoblotting , Immunoglobulin E/blood , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Male , Rhinitis, Allergic , Young Adult
13.
Microb Cell Fact ; 19(1): 179, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32907579

ABSTRACT

BACKGROUND: Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources. RESULTS: Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC-MS/MS-TripleQ and GC-MS, while untargeted metabolite profiling was performed using LC-MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures. CONCLUSIONS: Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.


Subject(s)
Acids/metabolism , Ascomycota/growth & development , Ascomycota/metabolism , Glucose/metabolism , Metabolome , Organic Chemicals/metabolism , Palm Oil/metabolism , Lipids/biosynthesis , Metabolic Networks and Pathways
14.
PeerJ ; 8: e9197, 2020.
Article in English | MEDLINE | ID: mdl-32509463

ABSTRACT

BACKGROUND: DNA double strand break repair is important to preserve the fidelity of our genetic makeup after DNA damage. Rad50 is one of the components in MRN complex important for DNA repair mechanism. Rad50 mutations can lead to microcephaly, mental retardation and growth retardation in human. However, Rad50 mutations in human and other organisms have never been gathered and heuristically compared for their deleterious effects. It is important to assess the conserved region in Rad50 and its homolog to identify vital mutations that can affect functions of the protein. METHOD: In this study, Rad50 mutations were retrieved from SNPeffect 4.0 database and literature. Each of the mutations was analyzed using various bioinformatic analyses such as PredictSNP, MutPred, SNPeffect 4.0, I-Mutant and MuPro to identify its impact on molecular mechanism, biological function and protein stability, respectively. RESULTS: We identified 103 mostly occurred mutations in the Rad50 protein domains and motifs, which only 42 mutations were classified as most deleterious. These mutations are mainly situated at the specific motifs such as Walker A, Q-loop, Walker B, D-loop and signature motif of the Rad50 protein. Some of these mutations were predicted to negatively affect several important functional sites that play important roles in DNA repair mechanism and cell cycle signaling pathway, highlighting Rad50 crucial role in this process. Interestingly, mutations located at non-conserved regions were predicted to have neutral/non-damaging effects, in contrast with previous experimental studies that showed deleterious effects. This suggests that software used in this study may have limitations in predicting mutations in non-conserved regions, implying further improvement in their algorithm is needed. In conclusion, this study reveals the priority of acid substitution associated with the genetic disorders. This finding highlights the vital roles of certain residues such as K42E, C681A/S, CC684R/S, S1202R, E1232Q and D1238N/A located in Rad50 conserved regions, which can be considered for a more targeted future studies.

15.
Phytochemistry ; 173: 112286, 2020 May.
Article in English | MEDLINE | ID: mdl-32059132

ABSTRACT

The chemical formation of terpenes in nature is carried out by terpene synthases as the main biocatalysts to guide the carbocation intermediate to form structurally diverse compounds including acyclic, mono- and multiple cyclic products. Despite intensive study of the enzyme active site, the mechanism of specific terpene biosynthesis remains unclear. Here we demonstrate that a single mutation of the amino acid L454G or L454A in the active site of Persicaria minor ß-sesquiphellandrene synthase leads to a more promiscuous enzyme that is capable of producing additional hydroxylated sesquiterpenes such as sesquicineole, sesquisabinene hydrate and α-bisabolol. Furthermore, the same L454 residue mutation (L454G or L454A) in the active site also improves the protein homogeneity compared to the wild type protein. Taken together, our results demonstrate that residue Leucine 454 in the active site of ß-sesquiphellandrene synthase is important for sesquiterpene product diversity as well as the protein homogeneity in solution.


Subject(s)
Alkyl and Aryl Transferases , Polygonaceae , Sesquiterpenes , Catalytic Domain , Mutagenesis, Site-Directed , Terpenes
16.
Sci Rep ; 9(1): 4933, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894561

ABSTRACT

Group 21 and 5 allergens are homologous house dust mite proteins known as mid-tier allergens. To reveal the biological function of group 21 allergens and to understand better the allergenicity of the rDer f 21 allergen, we determined the 1.5 Å crystal structure of rDer f 21 allergen from Dermatophagoides farinae. The rDer f 21 protein consists of a three helical bundle, similar to available structures of group 21 and homologous group 5 allergens. The rDer f 21 dimer forms a hydrophobic binding pocket similar to the one in the Der p 5 allergen, which indicates that both of the homologous groups could share a similar function. By performing structure-guided mutagenesis, we mutated all 38 surface-exposed polar residues of the rDer f 21 allergen and carried out immuno-dot blot assays using 24 atopic sera. Six residues, K10, K26, K42, E43, K46, and K48, which are located in the region between the N-terminus and the loop 1 of rDer f 21 were identified as the major IgE epitopes of rDer f 21. Epitope mapping of all potential IgE epitopes on the surface of the rDer f 21 crystal structure revealed heterogeneity in the sIgE recognition of the allergen epitopes in atopic individuals. The higher the allergen-sIgE level of an individual, the higher the number of epitope residues that are found in the allergen. The results illustrate the clear correlation between the number of specific major epitope residues in an allergen and the sIgE level of the atopic population.


Subject(s)
Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Dermatophagoides farinae/immunology , Epitopes/ultrastructure , Hypersensitivity, Immediate/immunology , Immunoglobulin E/blood , Animals , Antigens, Dermatophagoides/metabolism , Antigens, Dermatophagoides/ultrastructure , Arthropod Proteins/metabolism , Arthropod Proteins/ultrastructure , Crystallography, X-Ray , Epitope Mapping , Epitopes/immunology , Epitopes/metabolism , Humans , Hypersensitivity, Immediate/blood , Immunoglobulin E/immunology
17.
Adv Exp Med Biol ; 1102: 11-30, 2018.
Article in English | MEDLINE | ID: mdl-30382566

ABSTRACT

Functional genomics encompasses diverse disciplines in molecular biology and bioinformatics to comprehend the blueprint, regulation, and expression of genetic elements that define the physiology of an organism. The deluge of sequencing data in the postgenomics era has demanded the involvement of computer scientists and mathematicians to create algorithms, analytical software, and databases for the storage, curation, and analysis of biological big data. In this chapter, we discuss on the concept of functional genomics in the context of systems biology and provide examples of its application in human genetic disease studies, molecular crop improvement, and metagenomics for antibiotic discovery. An overview of transcriptomics workflow and experimental considerations is also introduced. Lastly, we present an in-house case study of transcriptomics analysis of an aromatic herbal plant to understand the effect of elicitation on the biosynthesis of volatile organic compounds.


Subject(s)
Computational Biology , Genomics/trends , Humans , Metagenomics , Plant Breeding , Software , Systems Biology
18.
PeerJ ; 6: e5377, 2018.
Article in English | MEDLINE | ID: mdl-30280012

ABSTRACT

Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.

19.
Data Brief ; 18: 1212-1216, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29900296

ABSTRACT

Mitragyna speciosa is a psychoactive plant known as "ketum" in Malaysia and "kratom" in Thailand. This plant is distinctly known to produce two important alkaloids, namely mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG) that can bind to opioid receptors [1]. MG was reported to exhibit antidepressant properties in animal studies [2]. These compounds were also proposed to have the potential to replace opioid analgesics with much lower risks of side effects [3]. To date, there are only over 40 metabolites identified in M. speciosa [4,5]. To obtain a more complete profile of secondary metabolites in ketum, we performed metabolomics study using mature leaves of the green M. speciosa variety. The leaf samples were extracted using methanol prior to liquid chromatography-electrospray ionization-time of flight-mass spectrometry (LC-ESI-TOF-MS) analysis. This data can be useful to for the identification of unknown metabolites that are associated with alkaloid biosynthesis pathway in M. speciosa.

20.
Plant Physiol Biochem ; 123: 359-368, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29304481

ABSTRACT

Geraniol degradation pathway has long been elucidated in microorganisms through bioconversion studies, yet weakly characterised in plants; enzyme with specific nerol-oxidising activity has not been reported. A novel cDNA encodes nerol dehydrogenase (PmNeDH) was isolated from Persicaria minor. The recombinant PmNeDH (rPmNeDH) is a homodimeric enzyme that belongs to MDR (medium-chain dehydrogenases/reductases) superfamily that catalyses the first oxidative step of geraniol degradation pathway in citral biosynthesis. Kinetic analysis revealed that rPmNeDH has a high specificity for allylic primary alcohols with backbone ≤10 carbons. rPmNeDH has ∼3 fold higher affinity towards nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) than its trans-isomer, geraniol. To our knowledge, this is the first alcohol dehydrogenase with higher preference towards nerol, suggesting that nerol can be effective substrate for citral biosynthesis in P. minor. The rPmNeDH crystal structure (1.54 Å) showed high similarity with enzyme structures from MDR superfamily. Structure guided mutation was conducted to describe the relationships between substrate specificity and residue substitutions in the active site. Kinetics analyses of wild-type rPmNeDH and several active site mutants demonstrated that the substrate specificity of rPmNeDH can be altered by changing any selected active site residues (Asp280, Leu294 and Ala303). Interestingly, the L294F, A303F and A303G mutants were able to revamp the substrate preference towards geraniol. Furthermore, mutant that exhibited a broader substrate range was also obtained. This study demonstrates that P. minor may have evolved to contain enzyme that optimally recognise cis-configured nerol as substrate. rPmNeDH structure provides new insights into the substrate specificity and active site plasticity in MDR superfamily.


Subject(s)
Monoterpenes , Oxidoreductases , Plant Proteins , Polygonaceae/enzymology , Terpenes , Acyclic Monoterpenes , Amino Acid Substitution , Monoterpenes/chemistry , Monoterpenes/metabolism , Mutation, Missense , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Polygonaceae/genetics , Protein Domains , Structure-Activity Relationship , Terpenes/chemistry , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...