Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
CPT Pharmacometrics Syst Pharmacol ; 9(7): 374-383, 2020 07.
Article in English | MEDLINE | ID: mdl-32558397

ABSTRACT

Gaucher's disease type 1 (GD1) leads to significant morbidity and mortality through clinical manifestations, such as splenomegaly, hematological complications, and bone disease. Two types of therapies are currently approved for GD1: enzyme replacement therapy (ERT), and substrate reduction therapy (SRT). In this study, we have developed a quantitative systems pharmacology (QSP) model, which recapitulates the effects of eliglustat, the only first-line SRT approved for GD1, on treatment-naïve or patients with ERT-stabilized adult GD1. This multiscale model represents the mechanism of action of eliglustat that leads toward reduction of spleen volume. Model capabilities were illustrated through the application of the model to predict ERT and eliglustat responses in virtual populations of adult patients with GD1, representing patients across a spectrum of disease severity as defined by genotype-phenotype relationships. In summary, the QSP model provides a mechanistic computational platform for predicting treatment response via different modalities within the heterogeneous GD1 patient population.


Subject(s)
Gaucher Disease/drug therapy , Models, Biological , Pyrrolidines/pharmacology , Systems Biology , Adult , Enzyme Inhibitors/pharmacology , Gaucher Disease/physiopathology , Humans , Severity of Illness Index , Splenomegaly/drug therapy , Splenomegaly/etiology , Treatment Outcome
2.
CPT Pharmacometrics Syst Pharmacol ; 7(7): 442-452, 2018 07.
Article in English | MEDLINE | ID: mdl-29920993

ABSTRACT

Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder with heterogeneous clinical manifestations, including hepatosplenomegaly and infiltrative pulmonary disease, and is associated with significant morbidity and mortality. Olipudase alfa (recombinant human acid sphingomyelinase) is an enzyme replacement therapy under development for the non-neurological manifestations of ASMD. We present a quantitative systems pharmacology (QSP) model supporting the clinical development of olipudase alfa. The model is multiscale and mechanistic, linking the enzymatic deficiency driving the disease to molecular-level, cellular-level, and organ-level effects. Model development was informed by natural history, and preclinical and clinical studies. By considering patient-specific pharmacokinetic (PK) profiles and indicators of disease severity, the model describes pharmacodynamic (PD) and clinical end points for individual patients. The ASMD QSP model provides a platform for quantitatively assessing systemic pharmacological effects in adult and pediatric patients, and explaining variability within and across these patient populations, thereby supporting the extrapolation of treatment response from adults to pediatrics.


Subject(s)
Enzyme Replacement Therapy/methods , Models, Biological , Niemann-Pick Diseases/therapy , Recombinant Proteins/therapeutic use , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/therapeutic use , Animals , Calibration , Humans , Mice , Mice, Knockout , Recombinant Proteins/pharmacokinetics , Sphingomyelin Phosphodiesterase/pharmacokinetics
3.
Biotechnol Bioeng ; 110(10): 2677-86, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23733452

ABSTRACT

Modifying the expression of multiple genes enables both deeper understanding of their function and the engineering of complex multigenic cellular phenotypes. However, deletion or overexpression of multiple genes is typically laborious and involves multiple sequential genetic modifications. Here we describe a strategy to randomize the expression state of multiple genes in Saccharomyces cerevisiae using Cre-loxP recombination. By inserting promoters flanked by inverted loxP sites in front of a gene of interest we can randomly alter its expression by turning it OFF or ON, or between four distinct expression states. We show at least 6 genes can be randomized independently and argue that using orthogonal loxP sites should increase this number to at least 15. Finally, we show how combining this strategy with mating allows easy introduction of native regulation as an additional expression state and use this to probe the role of four different enzymes involved in base excision repair in tolerance to methyl methane sulfonate (MMS), a genotoxic DNA alkylating agent. The set of vectors developed here can be used to randomize the expression of both heterologous genes and endogenous genes, and could immediately prove useful for metabolic engineering in yeast. Because Cre-loxP recombination works in many organisms, this strategy should be readily extendable.


Subject(s)
Gene Expression/genetics , Genetic Engineering/methods , Integrases/genetics , Recombination, Genetic/genetics , Cloning, Molecular , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Genotype , Phenotype , Plasmids/genetics , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL