Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters











Publication year range
1.
Curr Drug Targets ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39177131

ABSTRACT

The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.

2.
Front Neurol ; 15: 1422943, 2024.
Article in English | MEDLINE | ID: mdl-39119557

ABSTRACT

In amyotrophic lateral sclerosis (ALS) postmortem tissue and the SOD1 mouse model at mid-disease, death of hypoglossal motor neurons (XII MNs) is evident. These XII MNs innervate the intrinsic and extrinsic tongue muscles, and despite their importance in many oral and lingual motor behaviours that are affected by ALS (e.g., swallowing, speech, and respiratory functions), little is known about the timing and extent of tongue muscle denervation. Here in the well-characterised SOD1G93A (high-copy) mouse model, we evaluated XII MN numbers and intrinsic tongue muscle innervation using standard histopathological approaches, which included stereological evaluation of Nissl-stained brainstem, and the presynaptic and postsynaptic evaluation of neuromuscular junctions (NMJs), using synapsin, neurofilament, and α-bungarotoxin immunolabelling, at presymptomatic, onset, mid-disease, and endstage timepoints. We found that reduction in XII MN size at onset preceded reduced XII MN survival, while the denervation of tongue muscle did not appear until the endstage. Our study suggests that denervation-induced weakness may not be the most pertinent feature of orolingual deficits in ALS. Efforts to preserve oral and respiratory functions of XII MNs are incredibly important if we are to influence patient outcomes.

3.
Neurobiol Dis ; 200: 106614, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067491

ABSTRACT

Perineuronal nets (PNNs) are extracellular matrix structures that surround excitable neurons and their proximal dendrites. PNNs play an important role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can act as a trigger for neuronal death, and this has been implicated in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). We therefore characterised PNNs around alpha motor neurons and the possible contributing cellular factors in the mutant TDP-43Q331K transgenic mouse, a slow onset ALS mouse model. PNNs around alpha motor neurons showed significant loss at mid-stage disease in TDP-43Q331K mice compared to wild type strain control mice. PNN loss coincided with an increased expression of matrix metallopeptidase-9 (MMP-9), an endopeptidase known to cleave PNNs, within the ventral horn. During mid-stage disease, increased numbers of microglia and astrocytes expressing MMP-9 were present in the ventral horn of TDP-43Q331K mice. In addition, TDP-43Q331K mice showed increased levels of aggrecan, a PNN component, in the ventral horn by microglia and astrocytes during this period. Elevated aggrecan levels within glia were accompanied by an increase in fractalkine expression, a chemotaxic protein responsible for the recruitment of microglia, in alpha motor neurons of onset and mid-stage TDP-43Q331K mice. Following PNN loss, alpha motor neurons in mid-stage TDP-43Q331K mice showed increased 3-nitrotyrosine expression, an indicator of protein oxidation. Together, our observations along with previous PNN research provide suggests a possible model whereby microglia and astrocytes expressing MMP-9 degrade PNNs surrounding alpha motor neurons in the TDP-43Q331K mouse. This loss of nets may expose alpha-motor neurons to oxidative damage leading to degeneration of the alpha motor neurons in the TDP-43Q331K ALS mouse model.

4.
Neuropathol Appl Neurobiol ; 50(3): e12982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38742276

ABSTRACT

AIMS: Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS: This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS: We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS: Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.


Subject(s)
Amyotrophic Lateral Sclerosis , Astrocytes , Matrix Metalloproteinase 9 , Microglia , Phagocytosis , Superoxide Dismutase-1 , Animals , Mice , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Astrocytes/metabolism , Astrocytes/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Matrix Metalloproteinase 9/metabolism , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Motor Neurons/pathology , Motor Neurons/metabolism , Phagocytosis/physiology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
5.
STAR Protoc ; 4(4): 102725, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37976154

ABSTRACT

In response to the scarcity of advanced in vitro models dedicated to human CNS white matter research, we present a protocol to generate neuroectoderm-derived embedding-free human brain organoids enriched with oligodendrocytes. We describe steps for neuroectoderm differentiation, development of neural spheroids, and their transferal to Matrigel. We then detail procedures for the development, maturation, and application of oligodendrocyte-enriched brain organoids. The presence of myelin-producing cells makes these organoids useful for studying human white matter diseases, such as leukodystrophy.


Subject(s)
Brain , Oligodendroglia , Humans , Myelin Sheath , Organoids
6.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674434

ABSTRACT

It has been hypothesised that inhalational anaesthetics such as isoflurane (Iso) may trigger the pathogenesis of Alzheimer's disease (AD), while the gaseous anaesthetic xenon (Xe) exhibits many features of a putative neuroprotective agent. Loss of synapses is regarded as one key cause of dementia in AD. Multiple EGF-like domains 10 (MEGF10) is one of the phagocytic receptors which assists the elimination of synapses by astrocytes. Here, we investigated how ß-amyloid peptide 1-42 (Aß1-42), Iso and Xe interact with MEGF10-dependent synapse elimination. Murine cultured astrocytes as well as cortical and hippocampal ex vivo brain slices were treated with either Aß1-42, Iso or Xe and the combination of Aß1-42 with either Iso or Xe. We quantified MEGF10 expression in astrocytes and dendritic spine density (DSD) in slices. In brain slices of wild type and AAV-induced MEGF10 knock-down mice, antibodies against astrocytes (GFAP), pre- (synaptophysin) and postsynaptic (PSD95) components were used for co-localization analyses by means of immunofluorescence-imaging and 3D rendering techniques. Aß1-42 elevated pre- and postsynaptic components inside astrocytes and decreased DSD. The combined application with either Iso or Xe reversed these effects. In the presence of Aß1-42 both anaesthetics decreased MEGF10 expression. AAV-induced knock-down of MEGF10 reduced the pre- and postsynaptic marker inside astrocytes. The presented data suggest Iso and Xe are able to reverse the Aß1-42-induced enhancement of synaptic elimination in ex vivo hippocampal brain slices, presumably through MEGF10 downregulation.


Subject(s)
Alzheimer Disease , Anesthetics, Inhalation , Isoflurane , Mice , Animals , Isoflurane/pharmacology , Xenon/pharmacology , Xenon/metabolism , Astrocytes/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Hippocampus/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/metabolism , Anesthetics, Inhalation/pharmacology , Synapses/metabolism , Membrane Proteins/metabolism
8.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35887307

ABSTRACT

Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling-in GAD67+/- and VGAT-/- mice-are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.


Subject(s)
Synapses , Synaptic Transmission , Animals , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Mammals/metabolism , Mice , Neurogenesis , Neurons/metabolism , Synapses/metabolism , Synaptic Transmission/genetics , gamma-Aminobutyric Acid/metabolism
9.
Acta Neuropathol Commun ; 10(1): 61, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468848

ABSTRACT

A central event in the pathogenesis of motor neuron disease (MND) is the loss of neuromuscular junctions (NMJs), yet the mechanisms that lead to this event in MND remain to be fully elucidated. Maintenance of the NMJ relies upon neural agrin (n-agrin) which, when released from the nerve terminal, activates the postsynaptic Muscle Specific Kinase (MuSK) signaling complex to stabilize clusters of acetylcholine receptors. Here, we report that muscle from MND patients has an increased proportion of slow fibers and muscle fibers with smaller diameter. Muscle cells cultured from MND biopsies failed to form large clusters of acetylcholine receptors in response to either non-MND human motor axons or n-agrin. Furthermore, levels of expression of MuSK, and MuSK-complex components: LRP4, Caveolin-3, and Dok7 differed between muscle cells cultured from MND patients compared to those from non-MND controls. To our knowledge, this is the first time a fault in the n-agrin-LRP4-MuSK signaling pathway has been identified in muscle from MND patients. Our results highlight the n-agrin-LRP4-MuSK signaling pathway as a potential therapeutic target to prolong muscle function in MND.


Subject(s)
Agrin , Motor Neuron Disease , Agrin/metabolism , Humans , LDL-Receptor Related Proteins/metabolism , Receptors, Cholinergic/metabolism , Signal Transduction
10.
Life (Basel) ; 11(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34575143

ABSTRACT

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle weakness and wasting due to the lack of dystrophin protein. The acute phase of DMD is characterized by muscle necrosis and increased levels of the pro-inflammatory mediator, prostaglandin D2 (PGD2). Inhibiting the production of PGD2 by inhibiting hematopoietic prostaglandin D synthase (HPGDS) may alleviate inflammation and decrease muscle necrosis. We tested our novel HPGDS inhibitor, PK007, in the mdx mouse model of DMD. Our results show that hindlimb grip strength was two-fold greater in the PK007-treated mdx group, compared to untreated mdx mice, and displayed similar muscle strength to strain control mice (C57BL/10ScSn). Histological analyses showed a decreased percentage of regenerating muscle fibers (~20% less) in tibialis anterior (TA) and gastrocnemius muscles and reduced fibrosis in the TA muscle in PK007-treated mice. Lastly, we confirmed that the DMD blood biomarker, muscle creatine kinase activity, was also reduced by ~50% in PK007-treated mdx mice. We conclude that our HPGDS inhibitor, PK007, has effectively reduced muscle inflammation and fibrosis in a DMD mdx mouse model.

11.
Front Cell Dev Biol ; 9: 611601, 2021.
Article in English | MEDLINE | ID: mdl-34169068

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is characterized by degeneration of motor neurons in the brain and spinal cord. Cytoplasmic inclusions of TDP-43 are frequently reported in motor neurons of ALS patients. TDP-43 has also been shown to associate with stress granules (SGs), a complex of proteins and mRNAs formed in response to stress stimuli that temporarily sequester mRNA translation. The effect of pathogenic TDP-43 mutations within glycine-rich regions (where the majority of ALS-causing TDP-43 mutations occur) on SG dynamics in motor neurons is poorly understood. To address this issue, we generated murine NSC-34 cell lines that stably over-express wild type TDP-43 (TDP-43 W T ) or mutant forms (ALS-causing TDP-43 mutations TDP-43 A315T or TDP-43 M337V). We then differentiated these NSC-34 lines into motoneuron-like cells and evaluated SG formation and disassembly kinetics in response to oxidative or osmotic stress treatment. Wild type and mutant TDP-43 appeared to be largely retained in the nucleus following exposure to arsenite-induced oxidative stress. Upon arsenite removal, mutant TDP-43 clearly accumulated within HuR positive SGs in the cytoplasm, whereas TDP-43 W T remained mostly within the nucleus. 24 h following arsenite removal, all SGs were disassembled in both wild type and mutant TDP-43 expressing cells. By contrast, we observed significant differences in the dynamics of mutant TDP-43 association with SGs in response to hyperosmotic stress. Specifically, in response to sorbitol treatment, TDP-43 W T remained in the nucleus, whereas mutant TDP-43 relocalized to HuR positive SGs in the cytoplasm following exposure to sorbitol stress, resulting in a significant increase in TDP-43 SG numbers. These SGs remained assembled for 24 h following removal of sorbitol. Our data reveal that under certain stress conditions the rates of SG formation and disassembly is modulated by TDP-43 mutations associated with ALS, and suggest that this may be an early event in the seeding of insoluble cytoplasmic inclusions observed in ALS.

12.
Anat Rec (Hoboken) ; 304(7): 1562-1581, 2021 07.
Article in English | MEDLINE | ID: mdl-33099869

ABSTRACT

The total motor neuron (MN) somato-dendritic surface area is correlated with motor unit type. MNs with smaller surface areas innervate slow (S) and fast fatigue-resistant (FR) motor units, while MNs with larger surface areas innervate fast fatigue-intermediate (FInt) and fast fatigable (FF) motor units. Differences in MN surface area (equivalent to membrane capacitance) underpin the intrinsic excitability of MNs and are consistent with the orderly recruitment of motor units (S > FR > FInt > FF) via the Size Principle. In amyotrophic lateral sclerosis (ALS), large MNs controlling FInt and FF motor units exhibit earlier denervation and death, compared to smaller and more resilient MNs of type S and FR motor units that are spared until late in ALS. Abnormal dendritic morphologies in MNs precede neuronal death in human ALS and in rodent models. We employed Golgi-Cox methods to investigate somal size-dependent changes in the dendritic morphology of hypoglossal MNs in wildtype and SOD1G93A mice (a model of ALS), at postnatal (P) day ~30 (pre-symptomatic), ~P60 (onset), and ~P120 (mid-disease) stages. In wildtype hypoglossal MNs, increased MN somal size correlated with increased dendritic length and spines in a linear fashion. By contrast, in SOD1G93A mice, significant deviations from this linear correlation were restricted to the larger vulnerable MNs at pre-symptomatic (maladaptive) and mid-disease (degenerative) stages. These findings are consistent with excitability changes observed in ALS patients and in rodent models. Our results suggest that intrinsic or synaptic increases in MN excitability are likely to contribute to ALS pathogenesis, not compensate for it.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Dendrites/pathology , Hypoglossal Nerve/pathology , Motor Neurons/pathology , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Superoxide Dismutase-1
13.
J Neurosci ; 40(42): 8025-8041, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32928887

ABSTRACT

Within mammalian brain circuits, activity-dependent synaptic adaptations, such as synaptic scaling, stabilize neuronal activity in the face of perturbations. Stability afforded through synaptic scaling involves uniform scaling of quantal amplitudes across all synaptic inputs formed on neurons, as well as on the postsynaptic side. It remains unclear whether activity-dependent uniform scaling also operates within peripheral circuits. We tested for such scaling in a Drosophila larval neuromuscular circuit, where the muscle receives synaptic inputs from different motoneurons. We used motoneuron-specific genetic manipulations to increase the activity of only one motoneuron and recordings of postsynaptic currents from inputs formed by the different motoneurons. We discovered an adaptation which caused uniform downscaling of evoked neurotransmitter release across all inputs through decreases in release probabilities. This "presynaptic downscaling" maintained the relative differences in neurotransmitter release across all inputs around a homeostatic set point, caused a compensatory decrease in synaptic drive to the muscle affording robust and stable muscle activity, and was induced within hours. Presynaptic downscaling was associated with an activity-dependent increase in Drosophila vesicular glutamate transporter expression. Activity-dependent uniform scaling can therefore manifest also on the presynaptic side to produce robust and stable circuit outputs. Within brain circuits, uniform downscaling on the postsynaptic side is implicated in sleep- and memory-related processes. Our results suggest that evaluation of such processes might be broadened to include uniform downscaling on the presynaptic side.SIGNIFICANCE STATEMENT To date, compensatory adaptations which stabilise target cell activity through activity-dependent global scaling have been observed only within central circuits, and on the postsynaptic side. Considering that maintenance of stable activity is imperative for the robust function of the nervous system as a whole, we tested whether activity-dependent global scaling could also manifest within peripheral circuits. We uncovered a compensatory adaptation which causes global scaling within a peripheral circuit and on the presynaptic side through uniform downscaling of evoked neurotransmitter release. Unlike in central circuits, uniform scaling maintains functionality over a wide, rather than a narrow, operational range, affording robust and stable activity. Activity-dependent global scaling therefore operates on both the presynaptic and postsynaptic sides to maintain target cell activity.


Subject(s)
Drosophila/physiology , Glutamic Acid/physiology , Neurotransmitter Agents/metabolism , Animals , Evoked Potentials/physiology , Homeostasis , Immunohistochemistry , Locomotion/physiology , Motor Neurons/physiology , Muscles/innervation , Muscles/physiology , Neuromuscular Junction/physiology , Patch-Clamp Techniques , Synapses/physiology , Synaptic Potentials/physiology , Vesicular Glutamate Transport Proteins/metabolism
14.
J Cell Biol ; 219(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32259198

ABSTRACT

Dscam2 is a cell surface protein required for neuronal development in Drosophila; it can promote neural wiring through homophilic recognition that leads to either adhesion or repulsion between neurites. Here, we report that Dscam2 also plays a post-developmental role in suppressing synaptic strength. This function is dependent on one of two distinct extracellular isoforms of the protein and is autonomous to motor neurons. We link the PI3K enhancer, Centaurin gamma 1A, to the Dscam2-dependent regulation of synaptic strength and show that changes in phosphoinositide levels correlate with changes in endosomal compartments that have previously been associated with synaptic strength. Using transmission electron microscopy, we find an increase in synaptic vesicles at Dscam2 mutant active zones, providing a rationale for the increase in synaptic strength. Our study provides the first evidence that Dscam2 can regulate synaptic physiology and highlights how diverse roles of alternative protein isoforms can contribute to unique aspects of brain development and function.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Endosomes/metabolism , GTPase-Activating Proteins/metabolism , Larva/growth & development , Motor Neurons/metabolism , Neural Cell Adhesion Molecules/metabolism , Neurogenesis/genetics , Phosphatidylinositol 3-Kinases/metabolism , Animals , Animals, Genetically Modified , Drosophila/growth & development , Drosophila Proteins/genetics , Endosomes/genetics , Endosomes/ultrastructure , Immunohistochemistry , Larva/genetics , Larva/physiology , Larva/ultrastructure , Microscopy, Electron, Transmission , Motor Neurons/physiology , Mutation , Neural Cell Adhesion Molecules/genetics , Neuromuscular Junction/cytology , Neuromuscular Junction/genetics , Peripheral Nervous System/metabolism , Phosphatidylinositols/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Isoforms/metabolism , Synaptic Transmission/genetics , Synaptic Transmission/physiology
15.
PLoS Genet ; 16(3): e1008604, 2020 03.
Article in English | MEDLINE | ID: mdl-32130224

ABSTRACT

The influence of environmental insults on the onset and progression of mitochondrial diseases is unknown. To evaluate the effects of infection on mitochondrial disease we used a mouse model of Leigh Syndrome, where a missense mutation in the Taco1 gene results in the loss of the translation activator of cytochrome c oxidase subunit I (TACO1) protein. The mutation leads to an isolated complex IV deficiency that mimics the disease pathology observed in human patients with TACO1 mutations. We infected Taco1 mutant and wild-type mice with a murine cytomegalovirus and show that a common viral infection exacerbates the complex IV deficiency in a tissue-specific manner. We identified changes in neuromuscular morphology and tissue-specific regulation of the mammalian target of rapamycin pathway in response to viral infection. Taken together, we report for the first time that a common stress condition, such as viral infection, can exacerbate mitochondrial dysfunction in a genetic model of mitochondrial disease.


Subject(s)
Cytochrome-c Oxidase Deficiency/genetics , Cytomegalovirus Infections/genetics , Electron Transport Complex IV/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Muromegalovirus/pathogenicity , Animals , Cytochrome-c Oxidase Deficiency/virology , Cytomegalovirus Infections/virology , Disease Models, Animal , Leigh Disease/genetics , Leigh Disease/virology , Mice , Mice, Inbred C57BL , Mitochondrial Diseases/virology , Mutation/genetics , TOR Serine-Threonine Kinases/genetics
16.
ACS Omega ; 5(5): 2345-2354, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32064396

ABSTRACT

The cyclic hexapeptides PMX53 and PMX205 are potent noncompetitive inhibitors of complement C5a receptor 1 (C5aR1). They are widely utilized to study the role of C5aR1 in mouse models, including central nervous system (CNS) disease, and are dosed through a variety of routes of administration. However, a comprehensive pharmacokinetics analysis of these drugs has not been reported. In this study, the blood and CNS pharmacokinetics of PMX53 and PMX205 were performed in mice following intravenous, intraperitoneal, subcutaneous, and oral administration at identical doses. The absorption and distribution of both drugs were rapid and followed a two-compartment model with elimination half-lives of ∼20 min for both compounds. Urinary excretion was the major route of elimination following intravenous dosing with ∼50% of the drug excreted unchanged within the first 12 h. Oral bioavailability of PMX205 was higher than that of PMX53 (23% versus 9%), and PMX205 was also more efficient than PMX53 at entering the intact CNS. In comparison to other routes, subcutaneous administration of PMX205 resulted in high bioavailability (above 90%), as well as prolonged plasma and CNS exposure. Finally, repeated daily oral or subcutaneous administration of PMX205 demonstrated no accumulation of drug in blood, the brain, or the spinal cord, promoting its safety for chronic dosing. These results will be helpful in correlating the desired therapeutic effects of these C5aR1 antagonists with their pharmacokinetic profile. It also suggests that subcutaneous dosing of PMX205 may be an appropriate route of administration for future clinical testing in neurological disease.

17.
Anat Rec (Hoboken) ; 303(5): 1455-1471, 2020 05.
Article in English | MEDLINE | ID: mdl-31509351

ABSTRACT

The motor neuron (MN) soma surface area is correlated with motor unit type. Larger MNs innervate fast fatigue-intermediate (FInt) or fast-fatiguable (FF) muscle fibers in type FInt and FF motor units, respectively. Smaller MNs innervate slow-twitch fatigue-resistant (S) or fast fatigue-resistant (FR) muscle fibers in type S and FR motor units, respectively. In amyotrophic lateral sclerosis (ALS), FInt and FF motor units are more vulnerable, with denervation and MN death occurring for these units before the more resilient S and FR units. Abnormal MN dendritic arbors have been observed in ALS in humans and rodent models. We used a Golgi-Cox impregnation protocol to examine soma size-dependent changes in the dendritic morphology of lumbar MNs in SOD1G93A mice, a model of ALS, at pre-symptomatic, onset and mid-disease stages. In wildtype control mice, the relationship between MN soma surface area and dendritic length or dendritic spine number was highly linear (i.e., increased MN soma size correlated with increased dendritic length and spines). By contrast, in SOD1G93A mice, this linear relationship was lost and dendritic length reduction and spine loss were observed in larger MNs, from pre-symptomatic stages onward. These changes correlated with the neuromotor symptoms of ALS in rodent models. At presymptomatic ages, changes were restricted to the larger MNs, likely to comprise vulnerable FInt and FF motor units. Our results suggest morphological changes of MN dendrites and dendritic spines are likely to contribute ALS pathogenesis, not compensate for it. Anat Rec, 303:1455-1471, 2020. © 2019 American Association for Anatomy.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Dendrites/pathology , Motor Neurons/pathology , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/genetics , Animals , Dendritic Spines/pathology , Disease Models, Animal , Mice , Mice, Transgenic
18.
Neuroscience ; 425: 157-168, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31790671

ABSTRACT

It has long been known that each neuron in both the central and peripheral nervous system has a large number of active zones. Nonetheless, how active zones are regulated to maintain a homeostatic release state and response to the constantly changing environment remains poorly understood. Due to its relatively simple structure and easy accessibility, the neuromuscular synapse (NM-synapse) continues to be used as a model synapse to examine the basic nature of synaptic neurotransmission. In the NM-synapse, quantal neurotransmitter release can occur spontaneously or triggered by invading nerve impulses. Past research has indicated that some active zones tend to be involved more with spontaneous quantal release than evoked quantal release. Furthermore, evoked quantal release has been shown to be highly non-uniform between active zones along nerve terminal branches. How these large numbers of active zones along the same nerve terminal are functionally correlated remains unclear. This review starts with the basic features of quantal neurotransmitter release, then progresses to the current knowledge on how the active zones interact with each other along the same nerve terminal.


Subject(s)
Action Potentials/physiology , Neuromuscular Junction/physiology , Neurotransmitter Agents/metabolism , Synapses/physiology , Synaptic Transmission/physiology , Animals , Humans , Neurons/metabolism
19.
Front Cell Neurosci ; 13: 368, 2019.
Article in English | MEDLINE | ID: mdl-31456666

ABSTRACT

Brain derived neurotrophic factor (BDNF) is well recognized for its neuroprotective functions, via activation of its high affinity receptor, tropomysin related kinase B (TrkB). In addition, BDNF/TrkB neuroprotective functions can also be elicited indirectly via activation of adenosine 2A receptors (A2 a Rs), which in turn transactivates TrkB. Evidence suggests that alterations in BDNF/TrkB, including TrkB transactivation by A2 a Rs, can occur in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although enhancing BDNF has been a major goal for protection of dying motor neurons (MNs), this has not been successful. Indeed, there is emerging in vitro and in vivo evidence suggesting that an upregulation of BDNF/TrkB can cause detrimental effects on MNs, making them more vulnerable to pathophysiological insults. For example, in ALS, early synaptic hyper-excitability of MNs is thought to enhance BDNF-mediated signaling, thereby causing glutamate excitotoxicity, and ultimately MN death. Moreover, direct inhibition of TrkB and A2 a Rs has been shown to protect MNs from these pathophysiological insults, suggesting that modulation of BDNF/TrkB and/or A2 a Rs receptors may be important in early disease pathogenesis in ALS. This review highlights the relevance of pathophysiological actions of BDNF/TrkB under certain circumstances, so that manipulation of BDNF/TrkB and A2 a Rs may give rise to alternate neuroprotective therapeutic strategies in the treatment of neural diseases such as ALS.

20.
Neurobiol Dis ; 127: 223-232, 2019 07.
Article in English | MEDLINE | ID: mdl-30849511

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing motor neuron disease without effective treatment. Although the precise mechanisms leading to ALS are yet to be determined, there is now increasing evidence implicating components of the innate immune complement system in the onset and progression of its motor phenotypes. This review will survey the clinical and experimental evidence for the role of the complement system in driving neuroinflammation and contributing to ALS disease progression. Specifically, it will explore findings regarding the different complement activation pathways involved in ALS, with a focus on the terminal pathway. It will also examine potential future research directions for complement in ALS, highlighting the targeting of specific molecular components of the system.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Complement System Proteins/metabolism , Immunity, Innate/physiology , Amyotrophic Lateral Sclerosis/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL